You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
291 lines
9.3 KiB
291 lines
9.3 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
||
3 years ago
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import ParamAttr
|
||
|
from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D
|
||
|
from paddle.nn.initializer import KaimingNormal
|
||
|
from paddle.regularizer import L2Decay
|
||
|
|
||
3 years ago
|
from paddlers.models.ppdet.core.workspace import register, serializable
|
||
3 years ago
|
from numbers import Integral
|
||
|
from ..shape_spec import ShapeSpec
|
||
3 years ago
|
from paddlers.models.ppdet.modeling.ops import channel_shuffle
|
||
|
from paddlers.models.ppdet.modeling.backbones.shufflenet_v2 import ConvBNLayer
|
||
3 years ago
|
|
||
|
__all__ = ['ESNet']
|
||
|
|
||
|
|
||
|
def make_divisible(v, divisor=16, min_value=None):
|
||
|
if min_value is None:
|
||
|
min_value = divisor
|
||
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||
|
if new_v < 0.9 * v:
|
||
|
new_v += divisor
|
||
|
return new_v
|
||
|
|
||
|
|
||
|
class SEModule(nn.Layer):
|
||
|
def __init__(self, channel, reduction=4):
|
||
|
super(SEModule, self).__init__()
|
||
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
||
|
self.conv1 = Conv2D(
|
||
|
in_channels=channel,
|
||
|
out_channels=channel // reduction,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
weight_attr=ParamAttr(),
|
||
|
bias_attr=ParamAttr())
|
||
|
self.conv2 = Conv2D(
|
||
|
in_channels=channel // reduction,
|
||
|
out_channels=channel,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
weight_attr=ParamAttr(),
|
||
|
bias_attr=ParamAttr())
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
outputs = self.avg_pool(inputs)
|
||
|
outputs = self.conv1(outputs)
|
||
|
outputs = F.relu(outputs)
|
||
|
outputs = self.conv2(outputs)
|
||
|
outputs = F.hardsigmoid(outputs)
|
||
|
return paddle.multiply(x=inputs, y=outputs)
|
||
|
|
||
|
|
||
|
class InvertedResidual(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
mid_channels,
|
||
|
out_channels,
|
||
|
stride,
|
||
|
act="relu"):
|
||
|
super(InvertedResidual, self).__init__()
|
||
|
self._conv_pw = ConvBNLayer(
|
||
|
in_channels=in_channels // 2,
|
||
|
out_channels=mid_channels // 2,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1,
|
||
|
act=act)
|
||
|
self._conv_dw = ConvBNLayer(
|
||
|
in_channels=mid_channels // 2,
|
||
|
out_channels=mid_channels // 2,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
padding=1,
|
||
|
groups=mid_channels // 2,
|
||
|
act=None)
|
||
|
self._se = SEModule(mid_channels)
|
||
|
|
||
|
self._conv_linear = ConvBNLayer(
|
||
|
in_channels=mid_channels,
|
||
|
out_channels=out_channels // 2,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1,
|
||
|
act=act)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x1, x2 = paddle.split(
|
||
|
inputs,
|
||
|
num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
|
||
|
axis=1)
|
||
|
x2 = self._conv_pw(x2)
|
||
|
x3 = self._conv_dw(x2)
|
||
|
x3 = paddle.concat([x2, x3], axis=1)
|
||
|
x3 = self._se(x3)
|
||
|
x3 = self._conv_linear(x3)
|
||
|
out = paddle.concat([x1, x3], axis=1)
|
||
|
return channel_shuffle(out, 2)
|
||
|
|
||
|
|
||
|
class InvertedResidualDS(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
mid_channels,
|
||
|
out_channels,
|
||
|
stride,
|
||
|
act="relu"):
|
||
|
super(InvertedResidualDS, self).__init__()
|
||
|
|
||
|
# branch1
|
||
|
self._conv_dw_1 = ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=in_channels,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
padding=1,
|
||
|
groups=in_channels,
|
||
|
act=None)
|
||
|
self._conv_linear_1 = ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels // 2,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1,
|
||
|
act=act)
|
||
|
# branch2
|
||
|
self._conv_pw_2 = ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=mid_channels // 2,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1,
|
||
|
act=act)
|
||
|
self._conv_dw_2 = ConvBNLayer(
|
||
|
in_channels=mid_channels // 2,
|
||
|
out_channels=mid_channels // 2,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
padding=1,
|
||
|
groups=mid_channels // 2,
|
||
|
act=None)
|
||
|
self._se = SEModule(mid_channels // 2)
|
||
|
self._conv_linear_2 = ConvBNLayer(
|
||
|
in_channels=mid_channels // 2,
|
||
|
out_channels=out_channels // 2,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1,
|
||
|
act=act)
|
||
|
self._conv_dw_mv1 = ConvBNLayer(
|
||
|
in_channels=out_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
groups=out_channels,
|
||
|
act="hard_swish")
|
||
|
self._conv_pw_mv1 = ConvBNLayer(
|
||
|
in_channels=out_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1,
|
||
|
act="hard_swish")
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x1 = self._conv_dw_1(inputs)
|
||
|
x1 = self._conv_linear_1(x1)
|
||
|
x2 = self._conv_pw_2(inputs)
|
||
|
x2 = self._conv_dw_2(x2)
|
||
|
x2 = self._se(x2)
|
||
|
x2 = self._conv_linear_2(x2)
|
||
|
out = paddle.concat([x1, x2], axis=1)
|
||
|
out = self._conv_dw_mv1(out)
|
||
|
out = self._conv_pw_mv1(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class ESNet(nn.Layer):
|
||
|
def __init__(self,
|
||
|
scale=1.0,
|
||
|
act="hard_swish",
|
||
|
feature_maps=[4, 11, 14],
|
||
|
channel_ratio=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]):
|
||
|
super(ESNet, self).__init__()
|
||
|
self.scale = scale
|
||
|
if isinstance(feature_maps, Integral):
|
||
|
feature_maps = [feature_maps]
|
||
|
self.feature_maps = feature_maps
|
||
|
stage_repeats = [3, 7, 3]
|
||
|
|
||
|
stage_out_channels = [
|
||
|
-1, 24, make_divisible(128 * scale), make_divisible(256 * scale),
|
||
|
make_divisible(512 * scale), 1024
|
||
|
]
|
||
|
|
||
|
self._out_channels = []
|
||
|
self._feature_idx = 0
|
||
|
# 1. conv1
|
||
|
self._conv1 = ConvBNLayer(
|
||
|
in_channels=3,
|
||
|
out_channels=stage_out_channels[1],
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act=act)
|
||
|
self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
|
||
|
self._feature_idx += 1
|
||
|
|
||
|
# 2. bottleneck sequences
|
||
|
self._block_list = []
|
||
|
arch_idx = 0
|
||
|
for stage_id, num_repeat in enumerate(stage_repeats):
|
||
|
for i in range(num_repeat):
|
||
|
channels_scales = channel_ratio[arch_idx]
|
||
|
mid_c = make_divisible(
|
||
|
int(stage_out_channels[stage_id + 2] * channels_scales),
|
||
|
divisor=8)
|
||
|
if i == 0:
|
||
|
block = self.add_sublayer(
|
||
|
name=str(stage_id + 2) + '_' + str(i + 1),
|
||
|
sublayer=InvertedResidualDS(
|
||
|
in_channels=stage_out_channels[stage_id + 1],
|
||
|
mid_channels=mid_c,
|
||
|
out_channels=stage_out_channels[stage_id + 2],
|
||
|
stride=2,
|
||
|
act=act))
|
||
|
else:
|
||
|
block = self.add_sublayer(
|
||
|
name=str(stage_id + 2) + '_' + str(i + 1),
|
||
|
sublayer=InvertedResidual(
|
||
|
in_channels=stage_out_channels[stage_id + 2],
|
||
|
mid_channels=mid_c,
|
||
|
out_channels=stage_out_channels[stage_id + 2],
|
||
|
stride=1,
|
||
|
act=act))
|
||
|
self._block_list.append(block)
|
||
|
arch_idx += 1
|
||
|
self._feature_idx += 1
|
||
|
self._update_out_channels(stage_out_channels[stage_id + 2],
|
||
|
self._feature_idx, self.feature_maps)
|
||
|
|
||
|
def _update_out_channels(self, channel, feature_idx, feature_maps):
|
||
|
if feature_idx in feature_maps:
|
||
|
self._out_channels.append(channel)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
y = self._conv1(inputs['image'])
|
||
|
y = self._max_pool(y)
|
||
|
outs = []
|
||
|
for i, inv in enumerate(self._block_list):
|
||
|
y = inv(y)
|
||
|
if i + 2 in self.feature_maps:
|
||
|
outs.append(y)
|
||
|
|
||
|
return outs
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|