You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.2 KiB
101 lines
3.2 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from ppcls.data.preprocess.ops.autoaugment import ImageNetPolicy as RawImageNetPolicy
|
||
|
from ppcls.data.preprocess.ops.randaugment import RandAugment as RawRandAugment
|
||
|
from ppcls.data.preprocess.ops.timm_autoaugment import RawTimmAutoAugment
|
||
|
from ppcls.data.preprocess.ops.cutout import Cutout
|
||
|
|
||
|
from ppcls.data.preprocess.ops.hide_and_seek import HideAndSeek
|
||
|
from ppcls.data.preprocess.ops.random_erasing import RandomErasing
|
||
|
from ppcls.data.preprocess.ops.grid import GridMask
|
||
|
|
||
|
from ppcls.data.preprocess.ops.operators import DecodeImage
|
||
|
from ppcls.data.preprocess.ops.operators import ResizeImage
|
||
|
from ppcls.data.preprocess.ops.operators import CropImage
|
||
|
from ppcls.data.preprocess.ops.operators import RandCropImage
|
||
|
from ppcls.data.preprocess.ops.operators import RandFlipImage
|
||
|
from ppcls.data.preprocess.ops.operators import NormalizeImage
|
||
|
from ppcls.data.preprocess.ops.operators import ToCHWImage
|
||
|
from ppcls.data.preprocess.ops.operators import AugMix
|
||
|
|
||
|
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
|
||
|
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
|
||
|
|
||
|
def transform(data, ops=[]):
|
||
|
""" transform """
|
||
|
for op in ops:
|
||
|
data = op(data)
|
||
|
return data
|
||
|
|
||
|
|
||
|
class AutoAugment(RawImageNetPolicy):
|
||
|
""" ImageNetPolicy wrapper to auto fit different img types """
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
def __call__(self, img):
|
||
|
if not isinstance(img, Image.Image):
|
||
|
img = np.ascontiguousarray(img)
|
||
|
img = Image.fromarray(img)
|
||
|
|
||
|
img = super().__call__(img)
|
||
|
|
||
|
if isinstance(img, Image.Image):
|
||
|
img = np.asarray(img)
|
||
|
|
||
|
return img
|
||
|
|
||
|
|
||
|
class RandAugment(RawRandAugment):
|
||
|
""" RandAugment wrapper to auto fit different img types """
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
def __call__(self, img):
|
||
|
if not isinstance(img, Image.Image):
|
||
|
img = np.ascontiguousarray(img)
|
||
|
img = Image.fromarray(img)
|
||
|
|
||
|
img = super().__call__(img)
|
||
|
|
||
|
if isinstance(img, Image.Image):
|
||
|
img = np.asarray(img)
|
||
|
|
||
|
return img
|
||
|
|
||
|
|
||
|
class TimmAutoAugment(RawTimmAutoAugment):
|
||
|
""" TimmAutoAugment wrapper to auto fit different img tyeps. """
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
def __call__(self, img):
|
||
|
if not isinstance(img, Image.Image):
|
||
|
img = np.ascontiguousarray(img)
|
||
|
img = Image.fromarray(img)
|
||
|
|
||
|
img = super().__call__(img)
|
||
|
|
||
|
if isinstance(img, Image.Image):
|
||
|
img = np.asarray(img)
|
||
|
|
||
|
return img
|