|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle import ParamAttr
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|
|
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|
|
|
|
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
|
|
|
|
|
|
|
MODEL_URLS = {
|
|
|
|
"SqueezeNet1_0":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams",
|
|
|
|
"SqueezeNet1_1":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams",
|
|
|
|
}
|
|
|
|
|
|
|
|
__all__ = list(MODEL_URLS.keys())
|
|
|
|
|
|
|
|
|
|
|
|
class MakeFireConv(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
input_channels,
|
|
|
|
output_channels,
|
|
|
|
filter_size,
|
|
|
|
padding=0,
|
|
|
|
name=None):
|
|
|
|
super(MakeFireConv, self).__init__()
|
|
|
|
self._conv = Conv2D(
|
|
|
|
input_channels,
|
|
|
|
output_channels,
|
|
|
|
filter_size,
|
|
|
|
padding=padding,
|
|
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
|
|
|
bias_attr=ParamAttr(name=name + "_offset"))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self._conv(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class MakeFire(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
input_channels,
|
|
|
|
squeeze_channels,
|
|
|
|
expand1x1_channels,
|
|
|
|
expand3x3_channels,
|
|
|
|
name=None):
|
|
|
|
super(MakeFire, self).__init__()
|
|
|
|
self._conv = MakeFireConv(
|
|
|
|
input_channels, squeeze_channels, 1, name=name + "_squeeze1x1")
|
|
|
|
self._conv_path1 = MakeFireConv(
|
|
|
|
squeeze_channels, expand1x1_channels, 1, name=name + "_expand1x1")
|
|
|
|
self._conv_path2 = MakeFireConv(
|
|
|
|
squeeze_channels,
|
|
|
|
expand3x3_channels,
|
|
|
|
3,
|
|
|
|
padding=1,
|
|
|
|
name=name + "_expand3x3")
|
|
|
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
x = self._conv(inputs)
|
|
|
|
x1 = self._conv_path1(x)
|
|
|
|
x2 = self._conv_path2(x)
|
|
|
|
return paddle.concat([x1, x2], axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
class SqueezeNet(nn.Layer):
|
|
|
|
def __init__(self, version, class_num=1000):
|
|
|
|
super(SqueezeNet, self).__init__()
|
|
|
|
self.version = version
|
|
|
|
|
|
|
|
if self.version == "1.0":
|
|
|
|
self._conv = Conv2D(
|
|
|
|
3,
|
|
|
|
96,
|
|
|
|
7,
|
|
|
|
stride=2,
|
|
|
|
weight_attr=ParamAttr(name="conv1_weights"),
|
|
|
|
bias_attr=ParamAttr(name="conv1_offset"))
|
|
|
|
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
|
|
|
|
self._conv1 = MakeFire(96, 16, 64, 64, name="fire2")
|
|
|
|
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
|
|
|
|
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
|
|
|
|
|
|
|
|
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
|
|
|
|
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
|
|
|
|
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
|
|
|
|
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
|
|
|
|
|
|
|
|
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
|
|
|
|
else:
|
|
|
|
self._conv = Conv2D(
|
|
|
|
3,
|
|
|
|
64,
|
|
|
|
3,
|
|
|
|
stride=2,
|
|
|
|
padding=1,
|
|
|
|
weight_attr=ParamAttr(name="conv1_weights"),
|
|
|
|
bias_attr=ParamAttr(name="conv1_offset"))
|
|
|
|
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
|
|
|
|
self._conv1 = MakeFire(64, 16, 64, 64, name="fire2")
|
|
|
|
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
|
|
|
|
|
|
|
|
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
|
|
|
|
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
|
|
|
|
|
|
|
|
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
|
|
|
|
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
|
|
|
|
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
|
|
|
|
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
|
|
|
|
|
|
|
|
self._drop = Dropout(p=0.5, mode="downscale_in_infer")
|
|
|
|
self._conv9 = Conv2D(
|
|
|
|
512,
|
|
|
|
class_num,
|
|
|
|
1,
|
|
|
|
weight_attr=ParamAttr(name="conv10_weights"),
|
|
|
|
bias_attr=ParamAttr(name="conv10_offset"))
|
|
|
|
self._avg_pool = AdaptiveAvgPool2D(1)
|
|
|
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
x = self._conv(inputs)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = self._pool(x)
|
|
|
|
if self.version == "1.0":
|
|
|
|
x = self._conv1(x)
|
|
|
|
x = self._conv2(x)
|
|
|
|
x = self._conv3(x)
|
|
|
|
x = self._pool(x)
|
|
|
|
x = self._conv4(x)
|
|
|
|
x = self._conv5(x)
|
|
|
|
x = self._conv6(x)
|
|
|
|
x = self._conv7(x)
|
|
|
|
x = self._pool(x)
|
|
|
|
x = self._conv8(x)
|
|
|
|
else:
|
|
|
|
x = self._conv1(x)
|
|
|
|
x = self._conv2(x)
|
|
|
|
x = self._pool(x)
|
|
|
|
x = self._conv3(x)
|
|
|
|
x = self._conv4(x)
|
|
|
|
x = self._pool(x)
|
|
|
|
x = self._conv5(x)
|
|
|
|
x = self._conv6(x)
|
|
|
|
x = self._conv7(x)
|
|
|
|
x = self._conv8(x)
|
|
|
|
x = self._drop(x)
|
|
|
|
x = self._conv9(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = self._avg_pool(x)
|
|
|
|
x = paddle.squeeze(x, axis=[2, 3])
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
|
|
|
|
if pretrained is False:
|
|
|
|
pass
|
|
|
|
elif pretrained is True:
|
|
|
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
|
|
|
elif isinstance(pretrained, str):
|
|
|
|
load_dygraph_pretrain(model, pretrained)
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def SqueezeNet1_0(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
model = SqueezeNet(version="1.0", **kwargs)
|
|
|
|
_load_pretrained(
|
|
|
|
pretrained, model, MODEL_URLS["SqueezeNet1_0"], use_ssld=use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SqueezeNet1_1(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
model = SqueezeNet(version="1.1", **kwargs)
|
|
|
|
_load_pretrained(
|
|
|
|
pretrained, model, MODEL_URLS["SqueezeNet1_1"], use_ssld=use_ssld)
|
|
|
|
return model
|