You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

195 lines
6.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"SqueezeNet1_0":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams",
"SqueezeNet1_1":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class MakeFireConv(nn.Layer):
def __init__(self,
input_channels,
output_channels,
filter_size,
padding=0,
name=None):
super(MakeFireConv, self).__init__()
self._conv = Conv2D(
input_channels,
output_channels,
filter_size,
padding=padding,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=ParamAttr(name=name + "_offset"))
def forward(self, x):
x = self._conv(x)
x = F.relu(x)
return x
class MakeFire(nn.Layer):
def __init__(self,
input_channels,
squeeze_channels,
expand1x1_channels,
expand3x3_channels,
name=None):
super(MakeFire, self).__init__()
self._conv = MakeFireConv(
input_channels, squeeze_channels, 1, name=name + "_squeeze1x1")
self._conv_path1 = MakeFireConv(
squeeze_channels, expand1x1_channels, 1, name=name + "_expand1x1")
self._conv_path2 = MakeFireConv(
squeeze_channels,
expand3x3_channels,
3,
padding=1,
name=name + "_expand3x3")
def forward(self, inputs):
x = self._conv(inputs)
x1 = self._conv_path1(x)
x2 = self._conv_path2(x)
return paddle.concat([x1, x2], axis=1)
class SqueezeNet(nn.Layer):
def __init__(self, version, class_num=1000):
super(SqueezeNet, self).__init__()
self.version = version
if self.version == "1.0":
self._conv = Conv2D(
3,
96,
7,
stride=2,
weight_attr=ParamAttr(name="conv1_weights"),
bias_attr=ParamAttr(name="conv1_offset"))
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv1 = MakeFire(96, 16, 64, 64, name="fire2")
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
else:
self._conv = Conv2D(
3,
64,
3,
stride=2,
padding=1,
weight_attr=ParamAttr(name="conv1_weights"),
bias_attr=ParamAttr(name="conv1_offset"))
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv1 = MakeFire(64, 16, 64, 64, name="fire2")
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
self._drop = Dropout(p=0.5, mode="downscale_in_infer")
self._conv9 = Conv2D(
512,
class_num,
1,
weight_attr=ParamAttr(name="conv10_weights"),
bias_attr=ParamAttr(name="conv10_offset"))
self._avg_pool = AdaptiveAvgPool2D(1)
def forward(self, inputs):
x = self._conv(inputs)
x = F.relu(x)
x = self._pool(x)
if self.version == "1.0":
x = self._conv1(x)
x = self._conv2(x)
x = self._conv3(x)
x = self._pool(x)
x = self._conv4(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._pool(x)
x = self._conv8(x)
else:
x = self._conv1(x)
x = self._conv2(x)
x = self._pool(x)
x = self._conv3(x)
x = self._conv4(x)
x = self._pool(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._conv8(x)
x = self._drop(x)
x = self._conv9(x)
x = F.relu(x)
x = self._avg_pool(x)
x = paddle.squeeze(x, axis=[2, 3])
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def SqueezeNet1_0(pretrained=False, use_ssld=False, **kwargs):
model = SqueezeNet(version="1.0", **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["SqueezeNet1_0"], use_ssld=use_ssld)
return model
def SqueezeNet1_1(pretrained=False, use_ssld=False, **kwargs):
model = SqueezeNet(version="1.1", **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["SqueezeNet1_1"], use_ssld=use_ssld)
return model