|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle import ParamAttr
|
|
|
|
import paddle.nn as nn
|
|
|
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|
|
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|
|
|
from paddle.nn.initializer import Uniform
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
|
|
|
|
|
|
|
MODEL_URLS = {
|
|
|
|
"DenseNet121":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams",
|
|
|
|
"DenseNet161":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams",
|
|
|
|
"DenseNet169":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams",
|
|
|
|
"DenseNet201":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams",
|
|
|
|
"DenseNet264":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams",
|
|
|
|
}
|
|
|
|
|
|
|
|
__all__ = list(MODEL_URLS.keys())
|
|
|
|
|
|
|
|
|
|
|
|
class BNACConvLayer(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
filter_size,
|
|
|
|
stride=1,
|
|
|
|
pad=0,
|
|
|
|
groups=1,
|
|
|
|
act="relu",
|
|
|
|
name=None):
|
|
|
|
super(BNACConvLayer, self).__init__()
|
|
|
|
|
|
|
|
self._batch_norm = BatchNorm(
|
|
|
|
num_channels,
|
|
|
|
act=act,
|
|
|
|
param_attr=ParamAttr(name=name + '_bn_scale'),
|
|
|
|
bias_attr=ParamAttr(name + '_bn_offset'),
|
|
|
|
moving_mean_name=name + '_bn_mean',
|
|
|
|
moving_variance_name=name + '_bn_variance')
|
|
|
|
|
|
|
|
self._conv = Conv2D(
|
|
|
|
in_channels=num_channels,
|
|
|
|
out_channels=num_filters,
|
|
|
|
kernel_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=pad,
|
|
|
|
groups=groups,
|
|
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
def forward(self, input):
|
|
|
|
y = self._batch_norm(input)
|
|
|
|
y = self._conv(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class DenseLayer(nn.Layer):
|
|
|
|
def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
|
|
|
|
super(DenseLayer, self).__init__()
|
|
|
|
self.dropout = dropout
|
|
|
|
|
|
|
|
self.bn_ac_func1 = BNACConvLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=bn_size * growth_rate,
|
|
|
|
filter_size=1,
|
|
|
|
pad=0,
|
|
|
|
stride=1,
|
|
|
|
name=name + "_x1")
|
|
|
|
|
|
|
|
self.bn_ac_func2 = BNACConvLayer(
|
|
|
|
num_channels=bn_size * growth_rate,
|
|
|
|
num_filters=growth_rate,
|
|
|
|
filter_size=3,
|
|
|
|
pad=1,
|
|
|
|
stride=1,
|
|
|
|
name=name + "_x2")
|
|
|
|
|
|
|
|
if dropout:
|
|
|
|
self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer")
|
|
|
|
|
|
|
|
def forward(self, input):
|
|
|
|
conv = self.bn_ac_func1(input)
|
|
|
|
conv = self.bn_ac_func2(conv)
|
|
|
|
if self.dropout:
|
|
|
|
conv = self.dropout_func(conv)
|
|
|
|
conv = paddle.concat([input, conv], axis=1)
|
|
|
|
return conv
|
|
|
|
|
|
|
|
|
|
|
|
class DenseBlock(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_layers,
|
|
|
|
bn_size,
|
|
|
|
growth_rate,
|
|
|
|
dropout,
|
|
|
|
name=None):
|
|
|
|
super(DenseBlock, self).__init__()
|
|
|
|
self.dropout = dropout
|
|
|
|
|
|
|
|
self.dense_layer_func = []
|
|
|
|
|
|
|
|
pre_channel = num_channels
|
|
|
|
for layer in range(num_layers):
|
|
|
|
self.dense_layer_func.append(
|
|
|
|
self.add_sublayer(
|
|
|
|
"{}_{}".format(name, layer + 1),
|
|
|
|
DenseLayer(
|
|
|
|
num_channels=pre_channel,
|
|
|
|
growth_rate=growth_rate,
|
|
|
|
bn_size=bn_size,
|
|
|
|
dropout=dropout,
|
|
|
|
name=name + '_' + str(layer + 1))))
|
|
|
|
pre_channel = pre_channel + growth_rate
|
|
|
|
|
|
|
|
def forward(self, input):
|
|
|
|
conv = input
|
|
|
|
for func in self.dense_layer_func:
|
|
|
|
conv = func(conv)
|
|
|
|
return conv
|
|
|
|
|
|
|
|
|
|
|
|
class TransitionLayer(nn.Layer):
|
|
|
|
def __init__(self, num_channels, num_output_features, name=None):
|
|
|
|
super(TransitionLayer, self).__init__()
|
|
|
|
|
|
|
|
self.conv_ac_func = BNACConvLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_output_features,
|
|
|
|
filter_size=1,
|
|
|
|
pad=0,
|
|
|
|
stride=1,
|
|
|
|
name=name)
|
|
|
|
|
|
|
|
self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0)
|
|
|
|
|
|
|
|
def forward(self, input):
|
|
|
|
y = self.conv_ac_func(input)
|
|
|
|
y = self.pool2d_avg(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
filter_size,
|
|
|
|
stride=1,
|
|
|
|
pad=0,
|
|
|
|
groups=1,
|
|
|
|
act="relu",
|
|
|
|
name=None):
|
|
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
|
|
|
|
self._conv = Conv2D(
|
|
|
|
in_channels=num_channels,
|
|
|
|
out_channels=num_filters,
|
|
|
|
kernel_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=pad,
|
|
|
|
groups=groups,
|
|
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
|
|
|
bias_attr=False)
|
|
|
|
self._batch_norm = BatchNorm(
|
|
|
|
num_filters,
|
|
|
|
act=act,
|
|
|
|
param_attr=ParamAttr(name=name + '_bn_scale'),
|
|
|
|
bias_attr=ParamAttr(name + '_bn_offset'),
|
|
|
|
moving_mean_name=name + '_bn_mean',
|
|
|
|
moving_variance_name=name + '_bn_variance')
|
|
|
|
|
|
|
|
def forward(self, input):
|
|
|
|
y = self._conv(input)
|
|
|
|
y = self._batch_norm(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class DenseNet(nn.Layer):
|
|
|
|
def __init__(self, layers=60, bn_size=4, dropout=0, class_num=1000):
|
|
|
|
super(DenseNet, self).__init__()
|
|
|
|
|
|
|
|
supported_layers = [121, 161, 169, 201, 264]
|
|
|
|
assert layers in supported_layers, \
|
|
|
|
"supported layers are {} but input layer is {}".format(
|
|
|
|
supported_layers, layers)
|
|
|
|
densenet_spec = {
|
|
|
|
121: (64, 32, [6, 12, 24, 16]),
|
|
|
|
161: (96, 48, [6, 12, 36, 24]),
|
|
|
|
169: (64, 32, [6, 12, 32, 32]),
|
|
|
|
201: (64, 32, [6, 12, 48, 32]),
|
|
|
|
264: (64, 32, [6, 12, 64, 48])
|
|
|
|
}
|
|
|
|
num_init_features, growth_rate, block_config = densenet_spec[layers]
|
|
|
|
|
|
|
|
self.conv1_func = ConvBNLayer(
|
|
|
|
num_channels=3,
|
|
|
|
num_filters=num_init_features,
|
|
|
|
filter_size=7,
|
|
|
|
stride=2,
|
|
|
|
pad=3,
|
|
|
|
act='relu',
|
|
|
|
name="conv1")
|
|
|
|
|
|
|
|
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
|
|
|
|
|
|
|
|
self.block_config = block_config
|
|
|
|
|
|
|
|
self.dense_block_func_list = []
|
|
|
|
self.transition_func_list = []
|
|
|
|
pre_num_channels = num_init_features
|
|
|
|
num_features = num_init_features
|
|
|
|
for i, num_layers in enumerate(block_config):
|
|
|
|
self.dense_block_func_list.append(
|
|
|
|
self.add_sublayer(
|
|
|
|
"db_conv_{}".format(i + 2),
|
|
|
|
DenseBlock(
|
|
|
|
num_channels=pre_num_channels,
|
|
|
|
num_layers=num_layers,
|
|
|
|
bn_size=bn_size,
|
|
|
|
growth_rate=growth_rate,
|
|
|
|
dropout=dropout,
|
|
|
|
name='conv' + str(i + 2))))
|
|
|
|
|
|
|
|
num_features = num_features + num_layers * growth_rate
|
|
|
|
pre_num_channels = num_features
|
|
|
|
|
|
|
|
if i != len(block_config) - 1:
|
|
|
|
self.transition_func_list.append(
|
|
|
|
self.add_sublayer(
|
|
|
|
"tr_conv{}_blk".format(i + 2),
|
|
|
|
TransitionLayer(
|
|
|
|
num_channels=pre_num_channels,
|
|
|
|
num_output_features=num_features // 2,
|
|
|
|
name='conv' + str(i + 2) + "_blk")))
|
|
|
|
pre_num_channels = num_features // 2
|
|
|
|
num_features = num_features // 2
|
|
|
|
|
|
|
|
self.batch_norm = BatchNorm(
|
|
|
|
num_features,
|
|
|
|
act="relu",
|
|
|
|
param_attr=ParamAttr(name='conv5_blk_bn_scale'),
|
|
|
|
bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
|
|
|
|
moving_mean_name='conv5_blk_bn_mean',
|
|
|
|
moving_variance_name='conv5_blk_bn_variance')
|
|
|
|
|
|
|
|
self.pool2d_avg = AdaptiveAvgPool2D(1)
|
|
|
|
|
|
|
|
stdv = 1.0 / math.sqrt(num_features * 1.0)
|
|
|
|
|
|
|
|
self.out = Linear(
|
|
|
|
num_features,
|
|
|
|
class_num,
|
|
|
|
weight_attr=ParamAttr(
|
|
|
|
initializer=Uniform(-stdv, stdv), name="fc_weights"),
|
|
|
|
bias_attr=ParamAttr(name="fc_offset"))
|
|
|
|
|
|
|
|
def forward(self, input):
|
|
|
|
conv = self.conv1_func(input)
|
|
|
|
conv = self.pool2d_max(conv)
|
|
|
|
|
|
|
|
for i, num_layers in enumerate(self.block_config):
|
|
|
|
conv = self.dense_block_func_list[i](conv)
|
|
|
|
if i != len(self.block_config) - 1:
|
|
|
|
conv = self.transition_func_list[i](conv)
|
|
|
|
|
|
|
|
conv = self.batch_norm(conv)
|
|
|
|
y = self.pool2d_avg(conv)
|
|
|
|
y = paddle.flatten(y, start_axis=1, stop_axis=-1)
|
|
|
|
y = self.out(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
|
|
|
|
if pretrained is False:
|
|
|
|
pass
|
|
|
|
elif pretrained is True:
|
|
|
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
|
|
|
elif isinstance(pretrained, str):
|
|
|
|
load_dygraph_pretrain(model, pretrained)
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def DenseNet121(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
model = DenseNet(layers=121, **kwargs)
|
|
|
|
_load_pretrained(
|
|
|
|
pretrained, model, MODEL_URLS["DenseNet121"], use_ssld=use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def DenseNet161(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
model = DenseNet(layers=161, **kwargs)
|
|
|
|
_load_pretrained(
|
|
|
|
pretrained, model, MODEL_URLS["DenseNet161"], use_ssld=use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def DenseNet169(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
model = DenseNet(layers=169, **kwargs)
|
|
|
|
_load_pretrained(
|
|
|
|
pretrained, model, MODEL_URLS["DenseNet169"], use_ssld=use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def DenseNet201(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
model = DenseNet(layers=201, **kwargs)
|
|
|
|
_load_pretrained(
|
|
|
|
pretrained, model, MODEL_URLS["DenseNet201"], use_ssld=use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def DenseNet264(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
model = DenseNet(layers=264, **kwargs)
|
|
|
|
_load_pretrained(
|
|
|
|
pretrained, model, MODEL_URLS["DenseNet264"], use_ssld=use_ssld)
|
|
|
|
return model
|