|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle import ParamAttr
|
|
|
|
import paddle.nn as nn
|
|
|
|
from paddle.nn import Conv2D, BatchNorm, Linear
|
|
|
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|
|
|
from paddle.nn.initializer import Uniform
|
|
|
|
import math
|
|
|
|
|
|
|
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
|
|
|
|
|
|
|
MODEL_URLS = {
|
|
|
|
"ResNet18":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
|
|
|
|
"ResNet18_vd":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
|
|
|
|
"ResNet34":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
|
|
|
|
"ResNet34_vd":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
|
|
|
|
"ResNet50":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
|
|
|
|
"ResNet50_vd":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
|
|
|
|
"ResNet101":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
|
|
|
|
"ResNet101_vd":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
|
|
|
|
"ResNet152":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
|
|
|
|
"ResNet152_vd":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
|
|
|
|
"ResNet200_vd":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
|
|
|
|
}
|
|
|
|
|
|
|
|
MODEL_STAGES_PATTERN = {
|
|
|
|
"ResNet18": ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"],
|
|
|
|
"ResNet34": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
|
|
|
|
"ResNet50": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
|
|
|
|
"ResNet101": ["blocks[2]", "blocks[6]", "blocks[29]", "blocks[32]"],
|
|
|
|
"ResNet152": ["blocks[2]", "blocks[10]", "blocks[46]", "blocks[49]"],
|
|
|
|
"ResNet200": ["blocks[2]", "blocks[14]", "blocks[62]", "blocks[65]"]
|
|
|
|
}
|
|
|
|
|
|
|
|
__all__ = MODEL_URLS.keys()
|
|
|
|
'''
|
|
|
|
ResNet config: dict.
|
|
|
|
key: depth of ResNet.
|
|
|
|
values: config's dict of specific model.
|
|
|
|
keys:
|
|
|
|
block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
|
|
|
|
block_depth: The number of blocks in different stages in ResNet.
|
|
|
|
num_channels: The number of channels to enter the next stage.
|
|
|
|
'''
|
|
|
|
NET_CONFIG = {
|
|
|
|
"18": {
|
|
|
|
"block_type": "BasicBlock",
|
|
|
|
"block_depth": [2, 2, 2, 2],
|
|
|
|
"num_channels": [64, 64, 128, 256]
|
|
|
|
},
|
|
|
|
"34": {
|
|
|
|
"block_type": "BasicBlock",
|
|
|
|
"block_depth": [3, 4, 6, 3],
|
|
|
|
"num_channels": [64, 64, 128, 256]
|
|
|
|
},
|
|
|
|
"50": {
|
|
|
|
"block_type": "BottleneckBlock",
|
|
|
|
"block_depth": [3, 4, 6, 3],
|
|
|
|
"num_channels": [64, 256, 512, 1024]
|
|
|
|
},
|
|
|
|
"101": {
|
|
|
|
"block_type": "BottleneckBlock",
|
|
|
|
"block_depth": [3, 4, 23, 3],
|
|
|
|
"num_channels": [64, 256, 512, 1024]
|
|
|
|
},
|
|
|
|
"152": {
|
|
|
|
"block_type": "BottleneckBlock",
|
|
|
|
"block_depth": [3, 8, 36, 3],
|
|
|
|
"num_channels": [64, 256, 512, 1024]
|
|
|
|
},
|
|
|
|
"200": {
|
|
|
|
"block_type": "BottleneckBlock",
|
|
|
|
"block_depth": [3, 12, 48, 3],
|
|
|
|
"num_channels": [64, 256, 512, 1024]
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNLayer(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
filter_size,
|
|
|
|
stride=1,
|
|
|
|
groups=1,
|
|
|
|
is_vd_mode=False,
|
|
|
|
act=None,
|
|
|
|
lr_mult=1.0,
|
|
|
|
data_format="NCHW"):
|
|
|
|
super().__init__()
|
|
|
|
self.is_vd_mode = is_vd_mode
|
|
|
|
self.act = act
|
|
|
|
self.avg_pool = AvgPool2D(
|
|
|
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
|
|
self.conv = Conv2D(
|
|
|
|
in_channels=num_channels,
|
|
|
|
out_channels=num_filters,
|
|
|
|
kernel_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=(filter_size - 1) // 2,
|
|
|
|
groups=groups,
|
|
|
|
weight_attr=ParamAttr(learning_rate=lr_mult),
|
|
|
|
bias_attr=False,
|
|
|
|
data_format=data_format)
|
|
|
|
self.bn = BatchNorm(
|
|
|
|
num_filters,
|
|
|
|
param_attr=ParamAttr(learning_rate=lr_mult),
|
|
|
|
bias_attr=ParamAttr(learning_rate=lr_mult),
|
|
|
|
data_layout=data_format)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.is_vd_mode:
|
|
|
|
x = self.avg_pool(x)
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn(x)
|
|
|
|
if self.act:
|
|
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class BottleneckBlock(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
stride,
|
|
|
|
shortcut=True,
|
|
|
|
if_first=False,
|
|
|
|
lr_mult=1.0,
|
|
|
|
data_format="NCHW"):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=1,
|
|
|
|
act="relu",
|
|
|
|
lr_mult=lr_mult,
|
|
|
|
data_format=data_format)
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
|
|
num_channels=num_filters,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=3,
|
|
|
|
stride=stride,
|
|
|
|
act="relu",
|
|
|
|
lr_mult=lr_mult,
|
|
|
|
data_format=data_format)
|
|
|
|
self.conv2 = ConvBNLayer(
|
|
|
|
num_channels=num_filters,
|
|
|
|
num_filters=num_filters * 4,
|
|
|
|
filter_size=1,
|
|
|
|
act=None,
|
|
|
|
lr_mult=lr_mult,
|
|
|
|
data_format=data_format)
|
|
|
|
|
|
|
|
if not shortcut:
|
|
|
|
self.short = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_filters * 4,
|
|
|
|
filter_size=1,
|
|
|
|
stride=stride if if_first else 1,
|
|
|
|
is_vd_mode=False if if_first else True,
|
|
|
|
lr_mult=lr_mult,
|
|
|
|
data_format=data_format)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.shortcut = shortcut
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
x = self.conv0(x)
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
|
|
|
|
if self.shortcut:
|
|
|
|
short = identity
|
|
|
|
else:
|
|
|
|
short = self.short(identity)
|
|
|
|
x = paddle.add(x=x, y=short)
|
|
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class BasicBlock(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
stride,
|
|
|
|
shortcut=True,
|
|
|
|
if_first=False,
|
|
|
|
lr_mult=1.0,
|
|
|
|
data_format="NCHW"):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.stride = stride
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=3,
|
|
|
|
stride=stride,
|
|
|
|
act="relu",
|
|
|
|
lr_mult=lr_mult,
|
|
|
|
data_format=data_format)
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
|
|
num_channels=num_filters,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=3,
|
|
|
|
act=None,
|
|
|
|
lr_mult=lr_mult,
|
|
|
|
data_format=data_format)
|
|
|
|
if not shortcut:
|
|
|
|
self.short = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=1,
|
|
|
|
stride=stride if if_first else 1,
|
|
|
|
is_vd_mode=False if if_first else True,
|
|
|
|
lr_mult=lr_mult,
|
|
|
|
data_format=data_format)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
x = self.conv0(x)
|
|
|
|
x = self.conv1(x)
|
|
|
|
if self.shortcut:
|
|
|
|
short = identity
|
|
|
|
else:
|
|
|
|
short = self.short(identity)
|
|
|
|
x = paddle.add(x=x, y=short)
|
|
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ResNet(TheseusLayer):
|
|
|
|
"""
|
|
|
|
ResNet
|
|
|
|
Args:
|
|
|
|
config: dict. config of ResNet.
|
|
|
|
version: str="vb". Different version of ResNet, version vd can perform better.
|
|
|
|
class_num: int=1000. The number of classes.
|
|
|
|
lr_mult_list: list. Control the learning rate of different stages.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific ResNet model depends on args.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
config,
|
|
|
|
stages_pattern,
|
|
|
|
version="vb",
|
|
|
|
class_num=1000,
|
|
|
|
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
|
|
|
|
data_format="NCHW",
|
|
|
|
input_image_channel=3,
|
|
|
|
return_patterns=None,
|
|
|
|
return_stages=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.cfg = config
|
|
|
|
self.lr_mult_list = lr_mult_list
|
|
|
|
self.is_vd_mode = version == "vd"
|
|
|
|
self.class_num = class_num
|
|
|
|
self.num_filters = [64, 128, 256, 512]
|
|
|
|
self.block_depth = self.cfg["block_depth"]
|
|
|
|
self.block_type = self.cfg["block_type"]
|
|
|
|
self.num_channels = self.cfg["num_channels"]
|
|
|
|
self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
|
|
|
|
|
|
|
|
assert isinstance(self.lr_mult_list, (
|
|
|
|
list, tuple
|
|
|
|
)), "lr_mult_list should be in (list, tuple) but got {}".format(
|
|
|
|
type(self.lr_mult_list))
|
|
|
|
assert len(self.lr_mult_list
|
|
|
|
) == 5, "lr_mult_list length should be 5 but got {}".format(
|
|
|
|
len(self.lr_mult_list))
|
|
|
|
|
|
|
|
self.stem_cfg = {
|
|
|
|
#num_channels, num_filters, filter_size, stride
|
|
|
|
"vb": [[input_image_channel, 64, 7, 2]],
|
|
|
|
"vd":
|
|
|
|
[[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
|
|
|
|
}
|
|
|
|
|
|
|
|
self.stem = nn.Sequential(*[
|
|
|
|
ConvBNLayer(
|
|
|
|
num_channels=in_c,
|
|
|
|
num_filters=out_c,
|
|
|
|
filter_size=k,
|
|
|
|
stride=s,
|
|
|
|
act="relu",
|
|
|
|
lr_mult=self.lr_mult_list[0],
|
|
|
|
data_format=data_format)
|
|
|
|
for in_c, out_c, k, s in self.stem_cfg[version]
|
|
|
|
])
|
|
|
|
|
|
|
|
self.max_pool = MaxPool2D(
|
|
|
|
kernel_size=3, stride=2, padding=1, data_format=data_format)
|
|
|
|
block_list = []
|
|
|
|
for block_idx in range(len(self.block_depth)):
|
|
|
|
shortcut = False
|
|
|
|
for i in range(self.block_depth[block_idx]):
|
|
|
|
block_list.append(globals()[self.block_type](
|
|
|
|
num_channels=self.num_channels[block_idx] if i == 0 else
|
|
|
|
self.num_filters[block_idx] * self.channels_mult,
|
|
|
|
num_filters=self.num_filters[block_idx],
|
|
|
|
stride=2 if i == 0 and block_idx != 0 else 1,
|
|
|
|
shortcut=shortcut,
|
|
|
|
if_first=block_idx == i == 0 if version == "vd" else True,
|
|
|
|
lr_mult=self.lr_mult_list[block_idx + 1],
|
|
|
|
data_format=data_format))
|
|
|
|
shortcut = True
|
|
|
|
self.blocks = nn.Sequential(*block_list)
|
|
|
|
|
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.avg_pool_channels = self.num_channels[-1] * 2
|
|
|
|
stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
|
|
|
|
self.fc = Linear(
|
|
|
|
self.avg_pool_channels,
|
|
|
|
self.class_num,
|
|
|
|
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
|
|
|
|
|
|
|
|
self.data_format = data_format
|
|
|
|
|
|
|
|
super().init_res(
|
|
|
|
stages_pattern,
|
|
|
|
return_patterns=return_patterns,
|
|
|
|
return_stages=return_stages)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
with paddle.static.amp.fp16_guard():
|
|
|
|
if self.data_format == "NHWC":
|
|
|
|
x = paddle.transpose(x, [0, 2, 3, 1])
|
|
|
|
x.stop_gradient = True
|
|
|
|
x = self.stem(x)
|
|
|
|
x = self.max_pool(x)
|
|
|
|
x = self.blocks(x)
|
|
|
|
x = self.avg_pool(x)
|
|
|
|
x = self.flatten(x)
|
|
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld):
|
|
|
|
if pretrained is False:
|
|
|
|
pass
|
|
|
|
elif pretrained is True:
|
|
|
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
|
|
|
elif isinstance(pretrained, str):
|
|
|
|
load_dygraph_pretrain(model, pretrained)
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet18(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet18
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet18` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["18"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
|
|
|
|
version="vb",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet18_vd
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet18_vd` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["18"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
|
|
|
|
version="vd",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet34
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet34` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["34"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
|
|
|
|
version="vb",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet34_vd
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet34_vd` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["34"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
|
|
|
|
version="vd",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet50
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet50` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["50"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
|
|
|
|
version="vb",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet50_vd
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet50_vd` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["50"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
|
|
|
|
version="vd",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet101
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet101` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["101"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
|
|
|
|
version="vb",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet101_vd
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet101_vd` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["101"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
|
|
|
|
version="vd",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet152
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet152` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["152"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
|
|
|
|
version="vb",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet152_vd
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet152_vd` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["152"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
|
|
|
|
version="vd",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
ResNet200_vd
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `ResNet200_vd` model depends on args.
|
|
|
|
"""
|
|
|
|
model = ResNet(
|
|
|
|
config=NET_CONFIG["200"],
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet200"],
|
|
|
|
version="vd",
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
|
|
|
|
return model
|