|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
from paddle import ParamAttr
|
|
|
|
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
|
|
|
|
from paddle.regularizer import L2Decay
|
|
|
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
|
|
|
|
|
|
|
MODEL_URLS = {
|
|
|
|
"MobileNetV3_small_x0_35":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams",
|
|
|
|
"MobileNetV3_small_x0_5":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams",
|
|
|
|
"MobileNetV3_small_x0_75":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams",
|
|
|
|
"MobileNetV3_small_x1_0":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams",
|
|
|
|
"MobileNetV3_small_x1_25":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams",
|
|
|
|
"MobileNetV3_large_x0_35":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams",
|
|
|
|
"MobileNetV3_large_x0_5":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams",
|
|
|
|
"MobileNetV3_large_x0_75":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams",
|
|
|
|
"MobileNetV3_large_x1_0":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams",
|
|
|
|
"MobileNetV3_large_x1_25":
|
|
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams",
|
|
|
|
}
|
|
|
|
|
|
|
|
MODEL_STAGES_PATTERN = {
|
|
|
|
"MobileNetV3_small": ["blocks[0]", "blocks[2]", "blocks[7]", "blocks[10]"],
|
|
|
|
"MobileNetV3_large":
|
|
|
|
["blocks[0]", "blocks[2]", "blocks[5]", "blocks[11]", "blocks[14]"]
|
|
|
|
}
|
|
|
|
|
|
|
|
__all__ = MODEL_URLS.keys()
|
|
|
|
|
|
|
|
# "large", "small" is just for MobinetV3_large, MobileNetV3_small respectively.
|
|
|
|
# The type of "large" or "small" config is a list. Each element(list) represents a depthwise block, which is composed of k, exp, se, act, s.
|
|
|
|
# k: kernel_size
|
|
|
|
# exp: middle channel number in depthwise block
|
|
|
|
# c: output channel number in depthwise block
|
|
|
|
# se: whether to use SE block
|
|
|
|
# act: which activation to use
|
|
|
|
# s: stride in depthwise block
|
|
|
|
NET_CONFIG = {
|
|
|
|
"large": [
|
|
|
|
# k, exp, c, se, act, s
|
|
|
|
[3, 16, 16, False, "relu", 1],
|
|
|
|
[3, 64, 24, False, "relu", 2],
|
|
|
|
[3, 72, 24, False, "relu", 1],
|
|
|
|
[5, 72, 40, True, "relu", 2],
|
|
|
|
[5, 120, 40, True, "relu", 1],
|
|
|
|
[5, 120, 40, True, "relu", 1],
|
|
|
|
[3, 240, 80, False, "hardswish", 2],
|
|
|
|
[3, 200, 80, False, "hardswish", 1],
|
|
|
|
[3, 184, 80, False, "hardswish", 1],
|
|
|
|
[3, 184, 80, False, "hardswish", 1],
|
|
|
|
[3, 480, 112, True, "hardswish", 1],
|
|
|
|
[3, 672, 112, True, "hardswish", 1],
|
|
|
|
[5, 672, 160, True, "hardswish", 2],
|
|
|
|
[5, 960, 160, True, "hardswish", 1],
|
|
|
|
[5, 960, 160, True, "hardswish", 1],
|
|
|
|
],
|
|
|
|
"small": [
|
|
|
|
# k, exp, c, se, act, s
|
|
|
|
[3, 16, 16, True, "relu", 2],
|
|
|
|
[3, 72, 24, False, "relu", 2],
|
|
|
|
[3, 88, 24, False, "relu", 1],
|
|
|
|
[5, 96, 40, True, "hardswish", 2],
|
|
|
|
[5, 240, 40, True, "hardswish", 1],
|
|
|
|
[5, 240, 40, True, "hardswish", 1],
|
|
|
|
[5, 120, 48, True, "hardswish", 1],
|
|
|
|
[5, 144, 48, True, "hardswish", 1],
|
|
|
|
[5, 288, 96, True, "hardswish", 2],
|
|
|
|
[5, 576, 96, True, "hardswish", 1],
|
|
|
|
[5, 576, 96, True, "hardswish", 1],
|
|
|
|
]
|
|
|
|
}
|
|
|
|
# first conv output channel number in MobileNetV3
|
|
|
|
STEM_CONV_NUMBER = 16
|
|
|
|
# last second conv output channel for "small"
|
|
|
|
LAST_SECOND_CONV_SMALL = 576
|
|
|
|
# last second conv output channel for "large"
|
|
|
|
LAST_SECOND_CONV_LARGE = 960
|
|
|
|
# last conv output channel number for "large" and "small"
|
|
|
|
LAST_CONV = 1280
|
|
|
|
|
|
|
|
|
|
|
|
def _make_divisible(v, divisor=8, min_value=None):
|
|
|
|
if min_value is None:
|
|
|
|
min_value = divisor
|
|
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
|
|
if new_v < 0.9 * v:
|
|
|
|
new_v += divisor
|
|
|
|
return new_v
|
|
|
|
|
|
|
|
|
|
|
|
def _create_act(act):
|
|
|
|
if act == "hardswish":
|
|
|
|
return nn.Hardswish()
|
|
|
|
elif act == "relu":
|
|
|
|
return nn.ReLU()
|
|
|
|
elif act is None:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
"The activation function is not supported: {}".format(act))
|
|
|
|
|
|
|
|
|
|
|
|
class MobileNetV3(TheseusLayer):
|
|
|
|
"""
|
|
|
|
MobileNetV3
|
|
|
|
Args:
|
|
|
|
config: list. MobileNetV3 depthwise blocks config.
|
|
|
|
scale: float=1.0. The coefficient that controls the size of network parameters.
|
|
|
|
class_num: int=1000. The number of classes.
|
|
|
|
inplanes: int=16. The output channel number of first convolution layer.
|
|
|
|
class_squeeze: int=960. The output channel number of penultimate convolution layer.
|
|
|
|
class_expand: int=1280. The output channel number of last convolution layer.
|
|
|
|
dropout_prob: float=0.2. Probability of setting units to zero.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific MobileNetV3 model depends on args.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
config,
|
|
|
|
stages_pattern,
|
|
|
|
scale=1.0,
|
|
|
|
class_num=1000,
|
|
|
|
inplanes=STEM_CONV_NUMBER,
|
|
|
|
class_squeeze=LAST_SECOND_CONV_LARGE,
|
|
|
|
class_expand=LAST_CONV,
|
|
|
|
dropout_prob=0.2,
|
|
|
|
return_patterns=None,
|
|
|
|
return_stages=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.cfg = config
|
|
|
|
self.scale = scale
|
|
|
|
self.inplanes = inplanes
|
|
|
|
self.class_squeeze = class_squeeze
|
|
|
|
self.class_expand = class_expand
|
|
|
|
self.class_num = class_num
|
|
|
|
|
|
|
|
self.conv = ConvBNLayer(
|
|
|
|
in_c=3,
|
|
|
|
out_c=_make_divisible(self.inplanes * self.scale),
|
|
|
|
filter_size=3,
|
|
|
|
stride=2,
|
|
|
|
padding=1,
|
|
|
|
num_groups=1,
|
|
|
|
if_act=True,
|
|
|
|
act="hardswish")
|
|
|
|
|
|
|
|
self.blocks = nn.Sequential(*[
|
|
|
|
ResidualUnit(
|
|
|
|
in_c=_make_divisible(self.inplanes * self.scale if i == 0 else
|
|
|
|
self.cfg[i - 1][2] * self.scale),
|
|
|
|
mid_c=_make_divisible(self.scale * exp),
|
|
|
|
out_c=_make_divisible(self.scale * c),
|
|
|
|
filter_size=k,
|
|
|
|
stride=s,
|
|
|
|
use_se=se,
|
|
|
|
act=act) for i, (k, exp, c, se, act, s) in enumerate(self.cfg)
|
|
|
|
])
|
|
|
|
|
|
|
|
self.last_second_conv = ConvBNLayer(
|
|
|
|
in_c=_make_divisible(self.cfg[-1][2] * self.scale),
|
|
|
|
out_c=_make_divisible(self.scale * self.class_squeeze),
|
|
|
|
filter_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0,
|
|
|
|
num_groups=1,
|
|
|
|
if_act=True,
|
|
|
|
act="hardswish")
|
|
|
|
|
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
|
|
|
|
|
|
self.last_conv = Conv2D(
|
|
|
|
in_channels=_make_divisible(self.scale * self.class_squeeze),
|
|
|
|
out_channels=self.class_expand,
|
|
|
|
kernel_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0,
|
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
self.hardswish = nn.Hardswish()
|
|
|
|
if dropout_prob is not None:
|
|
|
|
self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
|
|
|
|
else:
|
|
|
|
self.dropout = None
|
|
|
|
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
|
|
|
|
|
|
|
|
self.fc = Linear(self.class_expand, class_num)
|
|
|
|
|
|
|
|
super().init_res(
|
|
|
|
stages_pattern,
|
|
|
|
return_patterns=return_patterns,
|
|
|
|
return_stages=return_stages)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.blocks(x)
|
|
|
|
x = self.last_second_conv(x)
|
|
|
|
x = self.avg_pool(x)
|
|
|
|
x = self.last_conv(x)
|
|
|
|
x = self.hardswish(x)
|
|
|
|
if self.dropout is not None:
|
|
|
|
x = self.dropout(x)
|
|
|
|
x = self.flatten(x)
|
|
|
|
x = self.fc(x)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNLayer(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
in_c,
|
|
|
|
out_c,
|
|
|
|
filter_size,
|
|
|
|
stride,
|
|
|
|
padding,
|
|
|
|
num_groups=1,
|
|
|
|
if_act=True,
|
|
|
|
act=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.conv = Conv2D(
|
|
|
|
in_channels=in_c,
|
|
|
|
out_channels=out_c,
|
|
|
|
kernel_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=padding,
|
|
|
|
groups=num_groups,
|
|
|
|
bias_attr=False)
|
|
|
|
self.bn = BatchNorm(
|
|
|
|
num_channels=out_c,
|
|
|
|
act=None,
|
|
|
|
param_attr=ParamAttr(regularizer=L2Decay(0.0)),
|
|
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
|
|
|
|
self.if_act = if_act
|
|
|
|
self.act = _create_act(act)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn(x)
|
|
|
|
if self.if_act:
|
|
|
|
x = self.act(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualUnit(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
in_c,
|
|
|
|
mid_c,
|
|
|
|
out_c,
|
|
|
|
filter_size,
|
|
|
|
stride,
|
|
|
|
use_se,
|
|
|
|
act=None):
|
|
|
|
super().__init__()
|
|
|
|
self.if_shortcut = stride == 1 and in_c == out_c
|
|
|
|
self.if_se = use_se
|
|
|
|
|
|
|
|
self.expand_conv = ConvBNLayer(
|
|
|
|
in_c=in_c,
|
|
|
|
out_c=mid_c,
|
|
|
|
filter_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0,
|
|
|
|
if_act=True,
|
|
|
|
act=act)
|
|
|
|
self.bottleneck_conv = ConvBNLayer(
|
|
|
|
in_c=mid_c,
|
|
|
|
out_c=mid_c,
|
|
|
|
filter_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=int((filter_size - 1) // 2),
|
|
|
|
num_groups=mid_c,
|
|
|
|
if_act=True,
|
|
|
|
act=act)
|
|
|
|
if self.if_se:
|
|
|
|
self.mid_se = SEModule(mid_c)
|
|
|
|
self.linear_conv = ConvBNLayer(
|
|
|
|
in_c=mid_c,
|
|
|
|
out_c=out_c,
|
|
|
|
filter_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0,
|
|
|
|
if_act=False,
|
|
|
|
act=None)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
x = self.expand_conv(x)
|
|
|
|
x = self.bottleneck_conv(x)
|
|
|
|
if self.if_se:
|
|
|
|
x = self.mid_se(x)
|
|
|
|
x = self.linear_conv(x)
|
|
|
|
if self.if_shortcut:
|
|
|
|
x = paddle.add(identity, x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
# nn.Hardsigmoid can't transfer "slope" and "offset" in nn.functional.hardsigmoid
|
|
|
|
class Hardsigmoid(TheseusLayer):
|
|
|
|
def __init__(self, slope=0.2, offset=0.5):
|
|
|
|
super().__init__()
|
|
|
|
self.slope = slope
|
|
|
|
self.offset = offset
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return nn.functional.hardsigmoid(
|
|
|
|
x, slope=self.slope, offset=self.offset)
|
|
|
|
|
|
|
|
|
|
|
|
class SEModule(TheseusLayer):
|
|
|
|
def __init__(self, channel, reduction=4):
|
|
|
|
super().__init__()
|
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
|
|
self.conv1 = Conv2D(
|
|
|
|
in_channels=channel,
|
|
|
|
out_channels=channel // reduction,
|
|
|
|
kernel_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.conv2 = Conv2D(
|
|
|
|
in_channels=channel // reduction,
|
|
|
|
out_channels=channel,
|
|
|
|
kernel_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0)
|
|
|
|
self.hardsigmoid = Hardsigmoid(slope=0.2, offset=0.5)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
x = self.avg_pool(x)
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.hardsigmoid(x)
|
|
|
|
return paddle.multiply(x=identity, y=x)
|
|
|
|
|
|
|
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld):
|
|
|
|
if pretrained is False:
|
|
|
|
pass
|
|
|
|
elif pretrained is True:
|
|
|
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
|
|
|
elif isinstance(pretrained, str):
|
|
|
|
load_dygraph_pretrain(model, pretrained)
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_small_x0_35(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_small_x0_35
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["small"],
|
|
|
|
scale=0.35,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_SMALL,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_35"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_small_x0_5(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_small_x0_5
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["small"],
|
|
|
|
scale=0.5,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_SMALL,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_5"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_small_x0_75(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_small_x0_75
|
|
|
|
Args:
|
|
|
|
pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise.
|
|
|
|
if str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["small"],
|
|
|
|
scale=0.75,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_SMALL,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_75"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_small_x1_0(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_small_x1_0
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["small"],
|
|
|
|
scale=1.0,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_SMALL,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_0"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_small_x1_25(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_small_x1_25
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["small"],
|
|
|
|
scale=1.25,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_SMALL,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_25"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_large_x0_35(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_large_x0_35
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["large"],
|
|
|
|
scale=0.35,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_LARGE,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_35"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_large_x0_5(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_large_x0_5
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["large"],
|
|
|
|
scale=0.5,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_LARGE,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_5"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_large_x0_75(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_large_x0_75
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["large"],
|
|
|
|
scale=0.75,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_LARGE,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_75"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_large_x1_0(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_large_x1_0
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["large"],
|
|
|
|
scale=1.0,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_LARGE,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_0"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def MobileNetV3_large_x1_25(pretrained=False, use_ssld=False, **kwargs):
|
|
|
|
"""
|
|
|
|
MobileNetV3_large_x1_25
|
|
|
|
Args:
|
|
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
|
|
If str, means the path of the pretrained model.
|
|
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
|
|
Returns:
|
|
|
|
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
|
|
|
|
"""
|
|
|
|
model = MobileNetV3(
|
|
|
|
config=NET_CONFIG["large"],
|
|
|
|
scale=1.25,
|
|
|
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
|
|
|
|
class_squeeze=LAST_SECOND_CONV_LARGE,
|
|
|
|
**kwargs)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_25"],
|
|
|
|
use_ssld)
|
|
|
|
return model
|