|
|
|
import os
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
|
|
|
|
|
|
import paddlers as pdrs
|
|
|
|
from paddlers import transforms as T
|
|
|
|
|
|
|
|
# 下载和解压多光谱地块分类数据集
|
|
|
|
dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
|
|
|
|
pdrs.utils.download_and_decompress(dataset, path='./data')
|
|
|
|
|
|
|
|
# 定义训练和验证时的transforms
|
|
|
|
channel = 10
|
|
|
|
train_transforms = T.Compose([
|
|
|
|
T.Resize(target_size=512),
|
|
|
|
T.RandomHorizontalFlip(),
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5] * channel, std=[0.5] * channel),
|
|
|
|
])
|
|
|
|
|
|
|
|
eval_transforms = T.Compose([
|
|
|
|
T.Resize(target_size=512),
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5] * channel, std=[0.5] * channel),
|
|
|
|
])
|
|
|
|
|
|
|
|
# 定义训练和验证所用的数据集
|
|
|
|
train_dataset = pdrs.datasets.SegDataset(
|
|
|
|
data_dir='./data/remote_sensing_seg',
|
|
|
|
file_list='./data/remote_sensing_seg/train.txt',
|
|
|
|
label_list='./data/remote_sensing_seg/labels.txt',
|
|
|
|
transforms=train_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=True)
|
|
|
|
|
|
|
|
eval_dataset = pdrs.datasets.SegDataset(
|
|
|
|
data_dir='./data/remote_sensing_seg',
|
|
|
|
file_list='./data/remote_sensing_seg/val.txt',
|
|
|
|
label_list='./data/remote_sensing_seg/labels.txt',
|
|
|
|
transforms=eval_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=False)
|
|
|
|
|
|
|
|
# 初始化模型,并进行训练
|
|
|
|
# 可使用VisualDL查看训练指标
|
|
|
|
num_classes = len(train_dataset.labels)
|
|
|
|
model = pdrs.tasks.DeepLabV3P(input_channel=channel, num_classes=num_classes, backbone='ResNet50_vd')
|
|
|
|
|
|
|
|
model.train(
|
|
|
|
num_epochs=10,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=4,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
learning_rate=0.01,
|
|
|
|
save_dir='output/deeplabv3p_r50vd')
|