|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# code was heavily based on https://github.com/rosinality/stylegan2-pytorch
|
|
|
|
# MIT License
|
|
|
|
# Copyright (c) 2019 Kim Seonghyeon
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
class FusedLeakyReLU(nn.Layer):
|
|
|
|
def __init__(self, channel, bias=True, negative_slope=0.2, scale=2**0.5):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
if bias:
|
|
|
|
self.bias = self.create_parameter(
|
|
|
|
(channel, ), default_initializer=nn.initializer.Constant(0.0))
|
|
|
|
|
|
|
|
else:
|
|
|
|
self.bias = None
|
|
|
|
|
|
|
|
self.negative_slope = negative_slope
|
|
|
|
self.scale = scale
|
|
|
|
|
|
|
|
def forward(self, input):
|
|
|
|
return fused_leaky_relu(input, self.bias, self.negative_slope,
|
|
|
|
self.scale)
|
|
|
|
|
|
|
|
|
|
|
|
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2**0.5):
|
|
|
|
if bias is not None:
|
|
|
|
rest_dim = [1] * (len(input.shape) - len(bias.shape) - 1)
|
|
|
|
return (F.leaky_relu(
|
|
|
|
input + bias.reshape((1, bias.shape[0], *rest_dim)),
|
|
|
|
negative_slope=0.2) * scale)
|
|
|
|
|
|
|
|
else:
|
|
|
|
return F.leaky_relu(input, negative_slope=0.2) * scale
|