You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
6.1 KiB
194 lines
6.1 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
import shapely.ops
|
||
|
from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
|
||
|
import copy
|
||
|
|
||
|
|
||
|
def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]):
|
||
|
# Rescaling (min-max normalization)
|
||
|
range_value = np.asarray(
|
||
|
[1. / (max_value[i] - min_value[i]) for i in range(len(max_value))],
|
||
|
dtype=np.float32)
|
||
|
im = (im - np.asarray(min_value, dtype=np.float32)) * range_value
|
||
|
|
||
|
# Standardization (Z-score Normalization)
|
||
|
im -= mean
|
||
|
im /= std
|
||
|
return im
|
||
|
|
||
|
|
||
|
def permute(im, to_bgr=False):
|
||
|
im = np.swapaxes(im, 1, 2)
|
||
|
im = np.swapaxes(im, 1, 0)
|
||
|
if to_bgr:
|
||
|
im = im[[2, 1, 0], :, :]
|
||
|
return im
|
||
|
|
||
|
|
||
|
def center_crop(im, crop_size=224):
|
||
|
height, width = im.shape[:2]
|
||
|
w_start = (width - crop_size) // 2
|
||
|
h_start = (height - crop_size) // 2
|
||
|
w_end = w_start + crop_size
|
||
|
h_end = h_start + crop_size
|
||
|
im = im[h_start:h_end, w_start:w_end, ...]
|
||
|
return im
|
||
|
|
||
|
|
||
|
def horizontal_flip(im):
|
||
|
im = im[:, ::-1, ...]
|
||
|
return im
|
||
|
|
||
|
|
||
|
def vertical_flip(im):
|
||
|
im = im[::-1, :, ...]
|
||
|
return im
|
||
|
|
||
|
|
||
|
def rgb2bgr(im):
|
||
|
return im[:, :, ::-1]
|
||
|
|
||
|
|
||
|
def is_poly(poly):
|
||
|
assert isinstance(poly, (list, dict)), \
|
||
|
"Invalid poly type: {}".format(type(poly))
|
||
|
return isinstance(poly, list)
|
||
|
|
||
|
|
||
|
def horizontal_flip_poly(poly, width):
|
||
|
flipped_poly = np.array(poly)
|
||
|
flipped_poly[0::2] = width - np.array(poly[0::2])
|
||
|
return flipped_poly.tolist()
|
||
|
|
||
|
|
||
|
def horizontal_flip_rle(rle, height, width):
|
||
|
import pycocotools.mask as mask_util
|
||
|
if 'counts' in rle and type(rle['counts']) == list:
|
||
|
rle = mask_util.frPyObjects(rle, height, width)
|
||
|
mask = mask_util.decode(rle)
|
||
|
mask = mask[:, ::-1]
|
||
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
||
|
return rle
|
||
|
|
||
|
|
||
|
def vertical_flip_poly(poly, height):
|
||
|
flipped_poly = np.array(poly)
|
||
|
flipped_poly[1::2] = height - np.array(poly[1::2])
|
||
|
return flipped_poly.tolist()
|
||
|
|
||
|
|
||
|
def vertical_flip_rle(rle, height, width):
|
||
|
import pycocotools.mask as mask_util
|
||
|
if 'counts' in rle and type(rle['counts']) == list:
|
||
|
rle = mask_util.frPyObjects(rle, height, width)
|
||
|
mask = mask_util.decode(rle)
|
||
|
mask = mask[::-1, :]
|
||
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
||
|
return rle
|
||
|
|
||
|
|
||
|
def crop_poly(segm, crop):
|
||
|
xmin, ymin, xmax, ymax = crop
|
||
|
crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
|
||
|
crop_p = np.array(crop_coord).reshape(4, 2)
|
||
|
crop_p = Polygon(crop_p)
|
||
|
|
||
|
crop_segm = list()
|
||
|
for poly in segm:
|
||
|
poly = np.array(poly).reshape(len(poly) // 2, 2)
|
||
|
polygon = Polygon(poly)
|
||
|
if not polygon.is_valid:
|
||
|
exterior = polygon.exterior
|
||
|
multi_lines = exterior.intersection(exterior)
|
||
|
polygons = shapely.ops.polygonize(multi_lines)
|
||
|
polygon = MultiPolygon(polygons)
|
||
|
multi_polygon = list()
|
||
|
if isinstance(polygon, MultiPolygon):
|
||
|
multi_polygon = copy.deepcopy(polygon)
|
||
|
else:
|
||
|
multi_polygon.append(copy.deepcopy(polygon))
|
||
|
for per_polygon in multi_polygon:
|
||
|
inter = per_polygon.intersection(crop_p)
|
||
|
if not inter:
|
||
|
continue
|
||
|
if isinstance(inter, (MultiPolygon, GeometryCollection)):
|
||
|
for part in inter:
|
||
|
if not isinstance(part, Polygon):
|
||
|
continue
|
||
|
part = np.squeeze(
|
||
|
np.array(part.exterior.coords[:-1]).reshape(1, -1))
|
||
|
part[0::2] -= xmin
|
||
|
part[1::2] -= ymin
|
||
|
crop_segm.append(part.tolist())
|
||
|
elif isinstance(inter, Polygon):
|
||
|
crop_poly = np.squeeze(
|
||
|
np.array(inter.exterior.coords[:-1]).reshape(1, -1))
|
||
|
crop_poly[0::2] -= xmin
|
||
|
crop_poly[1::2] -= ymin
|
||
|
crop_segm.append(crop_poly.tolist())
|
||
|
else:
|
||
|
continue
|
||
|
return crop_segm
|
||
|
|
||
|
|
||
|
def crop_rle(rle, crop, height, width):
|
||
|
import pycocotools.mask as mask_util
|
||
|
if 'counts' in rle and type(rle['counts']) == list:
|
||
|
rle = mask_util.frPyObjects(rle, height, width)
|
||
|
mask = mask_util.decode(rle)
|
||
|
mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
|
||
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
||
|
return rle
|
||
|
|
||
|
|
||
|
def expand_poly(poly, x, y):
|
||
|
expanded_poly = np.array(poly)
|
||
|
expanded_poly[0::2] += x
|
||
|
expanded_poly[1::2] += y
|
||
|
return expanded_poly.tolist()
|
||
|
|
||
|
|
||
|
def expand_rle(rle, x, y, height, width, h, w):
|
||
|
import pycocotools.mask as mask_util
|
||
|
if 'counts' in rle and type(rle['counts']) == list:
|
||
|
rle = mask_util.frPyObjects(rle, height, width)
|
||
|
mask = mask_util.decode(rle)
|
||
|
expanded_mask = np.full((h, w), 0).astype(mask.dtype)
|
||
|
expanded_mask[y:y + height, x:x + width] = mask
|
||
|
rle = mask_util.encode(np.array(expanded_mask, order='F', dtype=np.uint8))
|
||
|
return rle
|
||
|
|
||
|
|
||
|
def resize_poly(poly, im_scale_x, im_scale_y):
|
||
|
resized_poly = np.array(poly, dtype=np.float32)
|
||
|
resized_poly[0::2] *= im_scale_x
|
||
|
resized_poly[1::2] *= im_scale_y
|
||
|
return resized_poly.tolist()
|
||
|
|
||
|
|
||
|
def resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y, interp):
|
||
|
import pycocotools.mask as mask_util
|
||
|
if 'counts' in rle and type(rle['counts']) == list:
|
||
|
rle = mask_util.frPyObjects(rle, im_h, im_w)
|
||
|
mask = mask_util.decode(rle)
|
||
|
mask = cv2.resize(
|
||
|
mask, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
|
||
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
||
|
return rle
|