|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
import copy
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
import random
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic
|
|
|
|
from paddlers.transforms import DecodeImg, MixupImage
|
|
|
|
from paddlers.tools import YOLOAnchorCluster
|
|
|
|
|
|
|
|
|
|
|
|
class COCODetDataset(BaseDataset):
|
|
|
|
"""
|
|
|
|
Dataset with COCO annotations for detection tasks.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_dir (str): Root directory of the dataset.
|
|
|
|
image_dir (str): Directory that contains the images.
|
|
|
|
ann_path (str): Path to COCO annotations.
|
|
|
|
transforms (paddlers.transforms.Compose): Data preprocessing and data augmentation operators to apply.
|
|
|
|
label_list (str|None, optional): Path of the file that contains the category names. Defaults to None.
|
|
|
|
num_workers (int|str, optional): Number of processes used for data loading. If `num_workers` is 'auto',
|
|
|
|
the number of workers will be automatically determined according to the number of CPU cores: If
|
|
|
|
there are more than 16 cores,8 workers will be used. Otherwise, the number of workers will be half
|
|
|
|
the number of CPU cores. Defaults: 'auto'.
|
|
|
|
shuffle (bool, optional): Whether to shuffle the samples. Defaults to False.
|
|
|
|
allow_empty (bool, optional): Whether to add negative samples. Defaults to False.
|
|
|
|
empty_ratio (float, optional): Ratio of negative samples. If `empty_ratio` is smaller than 0 or not less
|
|
|
|
than 1, keep all generated negative samples. Defaults to 1.0.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
data_dir,
|
|
|
|
image_dir,
|
|
|
|
anno_path,
|
|
|
|
transforms,
|
|
|
|
label_list,
|
|
|
|
num_workers='auto',
|
|
|
|
shuffle=False,
|
|
|
|
allow_empty=False,
|
|
|
|
empty_ratio=1.):
|
|
|
|
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
|
|
|
|
# or matplotlib.backends is imported for the first time.
|
|
|
|
import matplotlib
|
|
|
|
matplotlib.use('Agg')
|
|
|
|
from pycocotools.coco import COCO
|
|
|
|
|
|
|
|
super(COCODetDataset, self).__init__(data_dir, label_list, transforms,
|
|
|
|
num_workers, shuffle)
|
|
|
|
|
|
|
|
self.data_fields = None
|
|
|
|
self.num_max_boxes = 50
|
|
|
|
|
|
|
|
self.use_mix = False
|
|
|
|
if self.transforms is not None:
|
|
|
|
for op in self.transforms.transforms:
|
|
|
|
if isinstance(op, MixupImage):
|
|
|
|
self.mixup_op = copy.deepcopy(op)
|
|
|
|
self.use_mix = True
|
|
|
|
self.num_max_boxes *= 2
|
|
|
|
break
|
|
|
|
|
|
|
|
self.batch_transforms = None
|
|
|
|
self.allow_empty = allow_empty
|
|
|
|
self.empty_ratio = empty_ratio
|
|
|
|
self.file_list = list()
|
|
|
|
neg_file_list = list()
|
|
|
|
self.labels = list()
|
|
|
|
|
|
|
|
annotations = dict()
|
|
|
|
annotations['images'] = list()
|
|
|
|
annotations['categories'] = list()
|
|
|
|
annotations['annotations'] = list()
|
|
|
|
|
|
|
|
cname2cid = OrderedDict()
|
|
|
|
label_id = 0
|
|
|
|
with open(label_list, 'r', encoding=get_encoding(label_list)) as f:
|
|
|
|
for line in f.readlines():
|
|
|
|
cname2cid[line.strip()] = label_id
|
|
|
|
label_id += 1
|
|
|
|
self.labels.append(line.strip())
|
|
|
|
|
|
|
|
for k, v in cname2cid.items():
|
|
|
|
annotations['categories'].append({
|
|
|
|
'supercategory': 'component',
|
|
|
|
'id': v + 1,
|
|
|
|
'name': k
|
|
|
|
})
|
|
|
|
|
|
|
|
anno_path = norm_path(os.path.join(self.data_dir, anno_path))
|
|
|
|
image_dir = norm_path(os.path.join(self.data_dir, image_dir))
|
|
|
|
|
|
|
|
assert anno_path.endswith('.json'), \
|
|
|
|
'invalid coco annotation file: ' + anno_path
|
|
|
|
from pycocotools.coco import COCO
|
|
|
|
coco = COCO(anno_path)
|
|
|
|
img_ids = coco.getImgIds()
|
|
|
|
img_ids.sort()
|
|
|
|
cat_ids = coco.getCatIds()
|
|
|
|
ct = 0
|
|
|
|
|
|
|
|
catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
|
|
|
|
cname2cid = dict({
|
|
|
|
coco.loadCats(catid)[0]['name']: clsid
|
|
|
|
for catid, clsid in catid2clsid.items()
|
|
|
|
})
|
|
|
|
|
|
|
|
for img_id in img_ids:
|
|
|
|
img_anno = coco.loadImgs([img_id])[0]
|
|
|
|
im_fname = img_anno['file_name']
|
|
|
|
im_w = float(img_anno['width'])
|
|
|
|
im_h = float(img_anno['height'])
|
|
|
|
|
|
|
|
im_path = os.path.join(image_dir,
|
|
|
|
im_fname) if image_dir else im_fname
|
|
|
|
if not os.path.exists(im_path):
|
|
|
|
logging.warning('Illegal image file: {}, and it will be '
|
|
|
|
'ignored'.format(im_path))
|
|
|
|
continue
|
|
|
|
|
|
|
|
if im_w < 0 or im_h < 0:
|
|
|
|
logging.warning(
|
|
|
|
'Illegal width: {} or height: {} in annotation, '
|
|
|
|
'and im_id: {} will be ignored'.format(im_w, im_h, img_id))
|
|
|
|
continue
|
|
|
|
|
|
|
|
im_info = {
|
|
|
|
'image': im_path,
|
|
|
|
'im_id': np.array([img_id]),
|
|
|
|
'image_shape': np.array(
|
|
|
|
[im_h, im_w], dtype=np.int32)
|
|
|
|
}
|
|
|
|
|
|
|
|
ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
|
|
|
|
instances = coco.loadAnns(ins_anno_ids)
|
|
|
|
|
|
|
|
is_crowds = []
|
|
|
|
gt_classes = []
|
|
|
|
gt_bboxs = []
|
|
|
|
gt_scores = []
|
|
|
|
difficults = []
|
|
|
|
|
|
|
|
for inst in instances:
|
|
|
|
# Check gt bbox
|
|
|
|
if inst.get('ignore', False):
|
|
|
|
continue
|
|
|
|
if 'bbox' not in inst.keys():
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
if not any(np.array(inst['bbox'])):
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Read the box
|
|
|
|
x1, y1, box_w, box_h = inst['bbox']
|
|
|
|
x2 = x1 + box_w
|
|
|
|
y2 = y1 + box_h
|
|
|
|
eps = 1e-5
|
|
|
|
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
|
|
|
|
inst['clean_bbox'] = [
|
|
|
|
round(float(x), 3) for x in [x1, y1, x2, y2]
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
logging.warning(
|
|
|
|
'Found an invalid bbox in annotations: im_id: {}, '
|
|
|
|
'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
|
|
|
|
img_id, float(inst['area']), x1, y1, x2, y2))
|
|
|
|
|
|
|
|
is_crowds.append([inst['iscrowd']])
|
|
|
|
gt_classes.append([inst['category_id']])
|
|
|
|
gt_bboxs.append(inst['clean_bbox'])
|
|
|
|
gt_scores.append([1.])
|
|
|
|
difficults.append([0])
|
|
|
|
|
|
|
|
annotations['annotations'].append({
|
|
|
|
'iscrowd': inst['iscrowd'],
|
|
|
|
'image_id': int(inst['image_id']),
|
|
|
|
'bbox': inst['clean_bbox'],
|
|
|
|
'area': inst['area'],
|
|
|
|
'category_id': inst['category_id'],
|
|
|
|
'id': inst['id'],
|
|
|
|
'difficult': 0
|
|
|
|
})
|
|
|
|
|
|
|
|
label_info = {
|
|
|
|
'is_crowd': np.array(is_crowds),
|
|
|
|
'gt_class': np.array(gt_classes),
|
|
|
|
'gt_bbox': np.array(gt_bboxs).astype(np.float32),
|
|
|
|
'gt_score': np.array(gt_scores).astype(np.float32),
|
|
|
|
'difficult': np.array(difficults),
|
|
|
|
}
|
|
|
|
|
|
|
|
if label_info['gt_bbox'].size > 0:
|
|
|
|
self.file_list.append({ ** im_info, ** label_info})
|
|
|
|
annotations['images'].append({
|
|
|
|
'height': im_h,
|
|
|
|
'width': im_w,
|
|
|
|
'id': int(im_info['im_id']),
|
|
|
|
'file_name': osp.split(im_info['image'])[1]
|
|
|
|
})
|
|
|
|
else:
|
|
|
|
neg_file_list.append({ ** im_info, ** label_info})
|
|
|
|
ct += 1
|
|
|
|
|
|
|
|
if self.use_mix:
|
|
|
|
self.num_max_boxes = max(self.num_max_boxes, 2 * len(instances))
|
|
|
|
else:
|
|
|
|
self.num_max_boxes = max(self.num_max_boxes, len(instances))
|
|
|
|
|
|
|
|
if not ct:
|
|
|
|
logging.error(
|
|
|
|
"No coco record found in %s' % (file_list)", exit=True)
|
|
|
|
self.pos_num = len(self.file_list)
|
|
|
|
if self.allow_empty and neg_file_list:
|
|
|
|
self.file_list += self._sample_empty(neg_file_list)
|
|
|
|
logging.info(
|
|
|
|
"{} samples in file {}, including {} positive samples and {} negative samples.".
|
|
|
|
format(
|
|
|
|
len(self.file_list), anno_path, self.pos_num,
|
|
|
|
len(self.file_list) - self.pos_num))
|
|
|
|
self.num_samples = len(self.file_list)
|
|
|
|
self.coco_gt = COCO()
|
|
|
|
self.coco_gt.dataset = annotations
|
|
|
|
self.coco_gt.createIndex()
|
|
|
|
|
|
|
|
self._epoch = 0
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
sample = copy.deepcopy(self.file_list[idx])
|
|
|
|
if self.data_fields is not None:
|
|
|
|
sample = {k: sample[k] for k in self.data_fields}
|
|
|
|
if self.use_mix and (self.mixup_op.mixup_epoch == -1 or
|
|
|
|
self._epoch < self.mixup_op.mixup_epoch):
|
|
|
|
if self.num_samples > 1:
|
|
|
|
mix_idx = random.randint(1, self.num_samples - 1)
|
|
|
|
mix_pos = (mix_idx + idx) % self.num_samples
|
|
|
|
else:
|
|
|
|
mix_pos = 0
|
|
|
|
sample_mix = copy.deepcopy(self.file_list[mix_pos])
|
|
|
|
if self.data_fields is not None:
|
|
|
|
sample_mix = {k: sample_mix[k] for k in self.data_fields}
|
|
|
|
sample = self.mixup_op(sample=[
|
|
|
|
DecodeImg(to_rgb=False)(sample),
|
|
|
|
DecodeImg(to_rgb=False)(sample_mix)
|
|
|
|
])
|
|
|
|
sample = self.transforms(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples
|
|
|
|
|
|
|
|
def set_epoch(self, epoch_id):
|
|
|
|
self._epoch = epoch_id
|
|
|
|
|
|
|
|
def cluster_yolo_anchor(self,
|
|
|
|
num_anchors,
|
|
|
|
image_size,
|
|
|
|
cache=True,
|
|
|
|
cache_path=None,
|
|
|
|
iters=300,
|
|
|
|
gen_iters=1000,
|
|
|
|
thresh=.25):
|
|
|
|
"""
|
|
|
|
Cluster YOLO anchors.
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_anchors (int): Number of clusters.
|
|
|
|
image_size (list[int]|int): [h, w] or an int value that corresponds to the shape [image_size, image_size].
|
|
|
|
cache (bool, optional): Whether to use cache. Defaults to True.
|
|
|
|
cache_path (str|None, optional): Path of cache directory. If None, use `dataset.data_dir`.
|
|
|
|
Defaults to None.
|
|
|
|
iters (int, optional): Iterations of k-means algorithm. Defaults to 300.
|
|
|
|
gen_iters (int, optional): Iterations of genetic algorithm. Defaults to 1000.
|
|
|
|
thresh (float, optional): Anchor scale threshold. Defaults to 0.25.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if cache_path is None:
|
|
|
|
cache_path = self.data_dir
|
|
|
|
cluster = YOLOAnchorCluster(
|
|
|
|
num_anchors=num_anchors,
|
|
|
|
dataset=self,
|
|
|
|
image_size=image_size,
|
|
|
|
cache=cache,
|
|
|
|
cache_path=cache_path,
|
|
|
|
iters=iters,
|
|
|
|
gen_iters=gen_iters,
|
|
|
|
thresh=thresh)
|
|
|
|
anchors = cluster()
|
|
|
|
return anchors
|
|
|
|
|
|
|
|
def add_negative_samples(self, image_dir, empty_ratio=1):
|
|
|
|
"""
|
|
|
|
Generate and add negative samples.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_dir (str): Directory that contains images.
|
|
|
|
empty_ratio (float|None, optional): Ratio of negative samples. If `empty_ratio` is smaller than
|
|
|
|
0 or not less than 1, keep all generated negative samples. Defaults to 1.0.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
if not osp.isdir(image_dir):
|
|
|
|
raise ValueError("{} is not a valid image directory.".format(
|
|
|
|
image_dir))
|
|
|
|
if empty_ratio is not None:
|
|
|
|
self.empty_ratio = empty_ratio
|
|
|
|
image_list = os.listdir(image_dir)
|
|
|
|
max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds()))
|
|
|
|
neg_file_list = list()
|
|
|
|
for image in image_list:
|
|
|
|
if not is_pic(image):
|
|
|
|
continue
|
|
|
|
gt_bbox = np.zeros((0, 4), dtype=np.float32)
|
|
|
|
gt_class = np.zeros((0, 1), dtype=np.int32)
|
|
|
|
gt_score = np.zeros((0, 1), dtype=np.float32)
|
|
|
|
is_crowd = np.zeros((0, 1), dtype=np.int32)
|
|
|
|
difficult = np.zeros((0, 1), dtype=np.int32)
|
|
|
|
|
|
|
|
max_img_id += 1
|
|
|
|
im_fname = osp.join(image_dir, image)
|
|
|
|
img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED)
|
|
|
|
im_h, im_w, im_c = img_data.shape
|
|
|
|
|
|
|
|
im_info = {
|
|
|
|
'im_id': np.asarray([max_img_id]),
|
|
|
|
'image_shape': np.array(
|
|
|
|
[im_h, im_w], dtype=np.int32)
|
|
|
|
}
|
|
|
|
label_info = {
|
|
|
|
'is_crowd': is_crowd,
|
|
|
|
'gt_class': gt_class,
|
|
|
|
'gt_bbox': gt_bbox,
|
|
|
|
'gt_score': gt_score,
|
|
|
|
'difficult': difficult
|
|
|
|
}
|
|
|
|
if 'gt_poly' in self.file_list[0]:
|
|
|
|
label_info['gt_poly'] = []
|
|
|
|
|
|
|
|
neg_file_list.append({'image': im_fname, ** im_info, ** label_info})
|
|
|
|
if neg_file_list:
|
|
|
|
self.allow_empty = True
|
|
|
|
self.file_list += self._sample_empty(neg_file_list)
|
|
|
|
logging.info(
|
|
|
|
"{} negative samples added. Dataset contains {} positive samples and {} negative samples.".
|
|
|
|
format(
|
|
|
|
len(self.file_list) - self.num_samples, self.pos_num,
|
|
|
|
len(self.file_list) - self.pos_num))
|
|
|
|
self.num_samples = len(self.file_list)
|
|
|
|
|
|
|
|
def _sample_empty(self, neg_file_list):
|
|
|
|
if 0. <= self.empty_ratio < 1.:
|
|
|
|
import random
|
|
|
|
total_num = len(self.file_list)
|
|
|
|
neg_num = total_num - self.pos_num
|
|
|
|
sample_num = min((total_num * self.empty_ratio - neg_num) //
|
|
|
|
(1 - self.empty_ratio), len(neg_file_list))
|
|
|
|
return random.sample(neg_file_list, sample_num)
|
|
|
|
else:
|
|
|
|
return neg_file_list
|