|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import copy
|
|
|
|
from enum import IntEnum
|
|
|
|
import os.path as osp
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic
|
|
|
|
|
|
|
|
|
|
|
|
class CDDataset(BaseDataset):
|
|
|
|
"""
|
|
|
|
Dataset for change detection tasks.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_dir (str): Root directory of the dataset.
|
|
|
|
file_list (str): Path of the file that contains relative paths of images and annotation files. When
|
|
|
|
`with_seg_labels` False, each line in the file contains the paths of the bi-temporal images and
|
|
|
|
the change mask. When `with_seg_labels` is True, each line in the file contains the paths of the
|
|
|
|
bi-temporal images, the path of the change mask, and the paths of the segmentation masks in both
|
|
|
|
temporal phases.
|
|
|
|
transforms (paddlers.transforms.Compose): Data preprocessing and data augmentation operators to apply.
|
|
|
|
label_list (str|None, optional): Path of the file that contains the category names. Defaults to None.
|
|
|
|
num_workers (int|str, optional): Number of processes used for data loading. If `num_workers` is 'auto',
|
|
|
|
the number of workers will be automatically determined according to the number of CPU cores: If
|
|
|
|
there are more than 16 cores,8 workers will be used. Otherwise, the number of workers will be half
|
|
|
|
the number of CPU cores. Defaults: 'auto'.
|
|
|
|
shuffle (bool, optional): Whether to shuffle the samples. Defaults to False.
|
|
|
|
with_seg_labels (bool, optional): Set `with_seg_labels` to True if the datasets provides segmentation
|
|
|
|
masks (e.g., building masks in each temporal phase). Defaults to False.
|
|
|
|
binarize_labels (bool, optional): Whether to binarize change masks and segmentation masks.
|
|
|
|
Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
data_dir,
|
|
|
|
file_list,
|
|
|
|
transforms,
|
|
|
|
label_list=None,
|
|
|
|
num_workers='auto',
|
|
|
|
shuffle=False,
|
|
|
|
with_seg_labels=False,
|
|
|
|
binarize_labels=False):
|
|
|
|
super(CDDataset, self).__init__(data_dir, label_list, transforms,
|
|
|
|
num_workers, shuffle)
|
|
|
|
|
|
|
|
DELIMETER = ' '
|
|
|
|
|
|
|
|
# TODO: batch padding
|
|
|
|
self.batch_transforms = None
|
|
|
|
self.file_list = list()
|
|
|
|
self.labels = list()
|
|
|
|
self.with_seg_labels = with_seg_labels
|
|
|
|
if self.with_seg_labels:
|
|
|
|
num_items = 5 # RGB1, RGB2, CD, Seg1, Seg2
|
|
|
|
else:
|
|
|
|
num_items = 3 # RGB1, RGB2, CD
|
|
|
|
self.binarize_labels = binarize_labels
|
|
|
|
|
|
|
|
# TODO: If `label_list` is not None, let the user parse `label_list`.
|
|
|
|
if label_list is not None:
|
|
|
|
with open(label_list, encoding=get_encoding(label_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
item = line.strip()
|
|
|
|
self.labels.append(item)
|
|
|
|
|
|
|
|
with open(file_list, encoding=get_encoding(file_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
items = line.strip().split(DELIMETER)
|
|
|
|
|
|
|
|
if len(items) != num_items:
|
|
|
|
raise ValueError(
|
|
|
|
"Line[{}] in file_list[{}] has an incorrect number of file paths.".
|
|
|
|
format(line.strip(), file_list))
|
|
|
|
|
|
|
|
items = list(map(norm_path, items))
|
|
|
|
|
|
|
|
full_path_im_t1 = osp.join(data_dir, items[0])
|
|
|
|
full_path_im_t2 = osp.join(data_dir, items[1])
|
|
|
|
full_path_label = osp.join(data_dir, items[2])
|
|
|
|
if not all(
|
|
|
|
map(is_pic, (full_path_im_t1, full_path_im_t2,
|
|
|
|
full_path_label))):
|
|
|
|
continue
|
|
|
|
if not osp.exists(full_path_im_t1):
|
|
|
|
raise IOError("Image file {} does not exist!".format(
|
|
|
|
full_path_im_t1))
|
|
|
|
if not osp.exists(full_path_im_t2):
|
|
|
|
raise IOError("Image file {} does not exist!".format(
|
|
|
|
full_path_im_t2))
|
|
|
|
if not osp.exists(full_path_label):
|
|
|
|
raise IOError("Label file {} does not exist!".format(
|
|
|
|
full_path_label))
|
|
|
|
|
|
|
|
if with_seg_labels:
|
|
|
|
full_path_seg_label_t1 = osp.join(data_dir, items[3])
|
|
|
|
full_path_seg_label_t2 = osp.join(data_dir, items[4])
|
|
|
|
if not osp.exists(full_path_seg_label_t1):
|
|
|
|
raise IOError("Label file {} does not exist!".format(
|
|
|
|
full_path_seg_label_t1))
|
|
|
|
if not osp.exists(full_path_seg_label_t2):
|
|
|
|
raise IOError("Label file {} does not exist!".format(
|
|
|
|
full_path_seg_label_t2))
|
|
|
|
|
|
|
|
item_dict = dict(
|
|
|
|
image_t1=full_path_im_t1,
|
|
|
|
image_t2=full_path_im_t2,
|
|
|
|
mask=full_path_label)
|
|
|
|
if with_seg_labels:
|
|
|
|
item_dict['aux_masks'] = [
|
|
|
|
full_path_seg_label_t1, full_path_seg_label_t2
|
|
|
|
]
|
|
|
|
|
|
|
|
self.file_list.append(item_dict)
|
|
|
|
|
|
|
|
self.num_samples = len(self.file_list)
|
|
|
|
logging.info("{} samples in file {}".format(
|
|
|
|
len(self.file_list), file_list))
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
sample = copy.deepcopy(self.file_list[idx])
|
|
|
|
sample = self.transforms.apply_transforms(sample)
|
|
|
|
|
|
|
|
if self.binarize_labels:
|
|
|
|
# Requires 'mask' to exist
|
|
|
|
sample['mask'] = self._binarize(sample['mask'])
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(self._binarize, sample['aux_masks']))
|
|
|
|
|
|
|
|
outputs = self.transforms.arrange_outputs(sample)
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.file_list)
|
|
|
|
|
|
|
|
def _binarize(self, mask, threshold=127):
|
|
|
|
return (mask > threshold).astype('int64')
|
|
|
|
|
|
|
|
|
|
|
|
class MaskType(IntEnum):
|
|
|
|
"""
|
|
|
|
Enumeration of the mask types used in the change detection task.
|
|
|
|
"""
|
|
|
|
|
|
|
|
CD = 0
|
|
|
|
SEG_T1 = 1
|
|
|
|
SEG_T2 = 2
|