|
|
|
import paddlers as pdrs
|
|
|
|
from paddlers import transforms as T
|
|
|
|
|
|
|
|
# 定义训练和验证时的transforms
|
|
|
|
train_transforms = T.Compose([
|
|
|
|
T.SelectBand([5, 10, 15, 20, 25]), # for tet
|
|
|
|
T.Resize(target_size=224),
|
|
|
|
T.RandomHorizontalFlip(),
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5, 0.5, 0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5, 0.5, 0.5]),
|
|
|
|
])
|
|
|
|
|
|
|
|
eval_transforms = T.Compose([
|
|
|
|
T.SelectBand([5, 10, 15, 20, 25]),
|
|
|
|
T.Resize(target_size=224),
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5, 0.5, 0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5, 0.5, 0.5]),
|
|
|
|
])
|
|
|
|
|
|
|
|
# 定义训练和验证所用的数据集
|
|
|
|
train_dataset = pdrs.datasets.ClasDataset(
|
|
|
|
data_dir='tutorials/train/classification/DataSet',
|
|
|
|
file_list='tutorials/train/classification/DataSet/train_list.txt',
|
|
|
|
label_list='tutorials/train/classification/DataSet/label_list.txt',
|
|
|
|
transforms=train_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=True)
|
|
|
|
|
|
|
|
eval_dataset = pdrs.datasets.ClasDataset(
|
|
|
|
data_dir='tutorials/train/classification/DataSet',
|
|
|
|
file_list='tutorials/train/classification/DataSet/val_list.txt',
|
|
|
|
label_list='tutorials/train/classification/DataSet/label_list.txt',
|
|
|
|
transforms=eval_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=False)
|
|
|
|
|
|
|
|
# 初始化模型
|
|
|
|
num_classes = len(train_dataset.labels)
|
|
|
|
model = pdrs.tasks.CondenseNetV2_b(in_channels=5, num_classes=num_classes)
|
|
|
|
|
|
|
|
# 进行训练
|
|
|
|
model.train(
|
|
|
|
num_epochs=100,
|
|
|
|
pretrain_weights=None,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=4,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
learning_rate=3e-4,
|
|
|
|
save_dir='output/condensenetv2_b')
|