You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

100 lines
3.5 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# 超分辨率数据集定义
class SRdataset(object):
def __init__(self,
mode,
gt_floder,
lq_floder,
transforms,
scale,
num_workers=4,
batch_size=8):
if mode == 'train':
preprocess = []
preprocess.append({
'name': 'LoadImageFromFile',
'key': 'lq'
}) # 加载方式
preprocess.append({'name': 'LoadImageFromFile', 'key': 'gt'})
preprocess.append(transforms) # 变换方式
self.dataset = {
'name': 'SRDataset',
'gt_folder': gt_floder,
'lq_folder': lq_floder,
'num_workers': num_workers,
'batch_size': batch_size,
'scale': scale,
'preprocess': preprocess
}
if mode == "test":
preprocess = []
preprocess.append({'name': 'LoadImageFromFile', 'key': 'lq'})
preprocess.append({'name': 'LoadImageFromFile', 'key': 'gt'})
preprocess.append(transforms)
self.dataset = {
'name': 'SRDataset',
'gt_folder': gt_floder,
'lq_folder': lq_floder,
'scale': scale,
'preprocess': preprocess
}
def __call__(self):
return self.dataset
# 对定义的transforms处理方式组合,返回字典
class ComposeTrans(object):
def __init__(self, input_keys, output_keys, pipelines):
if not isinstance(pipelines, list):
raise TypeError(
'Type of transforms is invalid. Must be List, but received is {}'
.format(type(pipelines)))
if len(pipelines) < 1:
raise ValueError(
'Length of transforms must not be less than 1, but received is {}'
.format(len(pipelines)))
self.transforms = pipelines
self.output_length = len(output_keys) # 当output_keys的长度为3时,是DRN训练
self.input_keys = input_keys
self.output_keys = output_keys
def __call__(self):
pipeline = []
for op in self.transforms:
if op['name'] == 'SRPairedRandomCrop':
op['keys'] = ['image'] * 2
else:
op['keys'] = ['image'] * self.output_length
pipeline.append(op)
if self.output_length == 2:
transform_dict = {
'name': 'Transforms',
'input_keys': self.input_keys,
'pipeline': pipeline
}
else:
transform_dict = {
'name': 'Transforms',
'input_keys': self.input_keys,
'output_keys': self.output_keys,
'pipeline': pipeline
}
return transform_dict