You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.5 KiB
100 lines
3.5 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
|
||
|
# 超分辨率数据集定义
|
||
|
class SRdataset(object):
|
||
|
def __init__(self,
|
||
|
mode,
|
||
|
gt_floder,
|
||
|
lq_floder,
|
||
|
transforms,
|
||
|
scale,
|
||
|
num_workers=4,
|
||
|
batch_size=8):
|
||
|
if mode == 'train':
|
||
|
preprocess = []
|
||
|
preprocess.append({
|
||
|
'name': 'LoadImageFromFile',
|
||
|
'key': 'lq'
|
||
|
}) # 加载方式
|
||
|
preprocess.append({'name': 'LoadImageFromFile', 'key': 'gt'})
|
||
|
preprocess.append(transforms) # 变换方式
|
||
|
self.dataset = {
|
||
|
'name': 'SRDataset',
|
||
|
'gt_folder': gt_floder,
|
||
|
'lq_folder': lq_floder,
|
||
|
'num_workers': num_workers,
|
||
|
'batch_size': batch_size,
|
||
|
'scale': scale,
|
||
|
'preprocess': preprocess
|
||
|
}
|
||
|
|
||
|
if mode == "test":
|
||
|
preprocess = []
|
||
|
preprocess.append({'name': 'LoadImageFromFile', 'key': 'lq'})
|
||
|
preprocess.append({'name': 'LoadImageFromFile', 'key': 'gt'})
|
||
|
preprocess.append(transforms)
|
||
|
self.dataset = {
|
||
|
'name': 'SRDataset',
|
||
|
'gt_folder': gt_floder,
|
||
|
'lq_folder': lq_floder,
|
||
|
'scale': scale,
|
||
|
'preprocess': preprocess
|
||
|
}
|
||
|
|
||
|
def __call__(self):
|
||
|
return self.dataset
|
||
|
|
||
|
|
||
|
# 对定义的transforms处理方式组合,返回字典
|
||
|
class ComposeTrans(object):
|
||
|
def __init__(self, input_keys, output_keys, pipelines):
|
||
|
if not isinstance(pipelines, list):
|
||
|
raise TypeError(
|
||
|
'Type of transforms is invalid. Must be List, but received is {}'
|
||
|
.format(type(pipelines)))
|
||
|
if len(pipelines) < 1:
|
||
|
raise ValueError(
|
||
|
'Length of transforms must not be less than 1, but received is {}'
|
||
|
.format(len(pipelines)))
|
||
|
self.transforms = pipelines
|
||
|
self.output_length = len(output_keys) # 当output_keys的长度为3时,是DRN训练
|
||
|
self.input_keys = input_keys
|
||
|
self.output_keys = output_keys
|
||
|
|
||
|
def __call__(self):
|
||
|
pipeline = []
|
||
|
for op in self.transforms:
|
||
|
if op['name'] == 'SRPairedRandomCrop':
|
||
|
op['keys'] = ['image'] * 2
|
||
|
else:
|
||
|
op['keys'] = ['image'] * self.output_length
|
||
|
pipeline.append(op)
|
||
|
if self.output_length == 2:
|
||
|
transform_dict = {
|
||
|
'name': 'Transforms',
|
||
|
'input_keys': self.input_keys,
|
||
|
'pipeline': pipeline
|
||
|
}
|
||
|
else:
|
||
|
transform_dict = {
|
||
|
'name': 'Transforms',
|
||
|
'input_keys': self.input_keys,
|
||
|
'output_keys': self.output_keys,
|
||
|
'pipeline': pipeline
|
||
|
}
|
||
|
|
||
|
return transform_dict
|