|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import copy
|
|
|
|
import os
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import tqdm
|
|
|
|
from scipy.cluster.vq import kmeans
|
|
|
|
|
|
|
|
from paddlers.utils import logging
|
|
|
|
|
|
|
|
__all__ = ['YOLOAnchorCluster']
|
|
|
|
|
|
|
|
|
|
|
|
class BaseAnchorCluster(object):
|
|
|
|
def __init__(self, num_anchors, cache, cache_path):
|
|
|
|
"""
|
|
|
|
Base Anchor Cluster
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_anchors (int): number of clusters
|
|
|
|
cache (bool): whether using cache
|
|
|
|
cache_path (str): cache directory path
|
|
|
|
"""
|
|
|
|
super(BaseAnchorCluster, self).__init__()
|
|
|
|
self.num_anchors = num_anchors
|
|
|
|
self.cache_path = cache_path
|
|
|
|
self.cache = cache
|
|
|
|
|
|
|
|
def print_result(self, centers):
|
|
|
|
raise NotImplementedError('%s.print_result is not available' %
|
|
|
|
self.__class__.__name__)
|
|
|
|
|
|
|
|
def get_whs(self):
|
|
|
|
whs_cache_path = os.path.join(self.cache_path, 'whs.npy')
|
|
|
|
shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy')
|
|
|
|
if self.cache and os.path.exists(whs_cache_path) and os.path.exists(
|
|
|
|
shapes_cache_path):
|
|
|
|
self.whs = np.load(whs_cache_path)
|
|
|
|
self.shapes = np.load(shapes_cache_path)
|
|
|
|
return self.whs, self.shapes
|
|
|
|
whs = np.zeros((0, 2))
|
|
|
|
shapes = np.zeros((0, 2))
|
|
|
|
samples = copy.deepcopy(self.dataset.file_list)
|
|
|
|
for sample in tqdm(samples):
|
|
|
|
im_h, im_w = sample['image_shape']
|
|
|
|
bbox = sample['gt_bbox']
|
|
|
|
wh = bbox[:, 2:4] - bbox[:, 0:2]
|
|
|
|
wh = wh / np.array([[im_w, im_h]])
|
|
|
|
shape = np.ones_like(wh) * np.array([[im_w, im_h]])
|
|
|
|
whs = np.vstack((whs, wh))
|
|
|
|
shapes = np.vstack((shapes, shape))
|
|
|
|
|
|
|
|
if self.cache:
|
|
|
|
os.makedirs(self.cache_path, exist_ok=True)
|
|
|
|
np.save(whs_cache_path, whs)
|
|
|
|
np.save(shapes_cache_path, shapes)
|
|
|
|
|
|
|
|
self.whs = whs
|
|
|
|
self.shapes = shapes
|
|
|
|
return self.whs, self.shapes
|
|
|
|
|
|
|
|
def calc_anchors(self):
|
|
|
|
raise NotImplementedError('%s.calc_anchors is not available' %
|
|
|
|
self.__class__.__name__)
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
self.get_whs()
|
|
|
|
centers = self.calc_anchors()
|
|
|
|
return centers
|
|
|
|
|
|
|
|
|
|
|
|
class YOLOAnchorCluster(BaseAnchorCluster):
|
|
|
|
def __init__(self,
|
|
|
|
num_anchors,
|
|
|
|
dataset,
|
|
|
|
image_size,
|
|
|
|
cache=True,
|
|
|
|
cache_path=None,
|
|
|
|
iters=300,
|
|
|
|
gen_iters=1000,
|
|
|
|
thresh=0.25):
|
|
|
|
"""
|
|
|
|
YOLOv5 Anchor Cluster
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_anchors (int): number of clusters
|
|
|
|
dataset (DataSet): DataSet instance, VOC or COCO
|
|
|
|
image_size (list or int): [h, w], being an int means image height and image width are the same.
|
|
|
|
cache (bool): whether using cache. Defaults to True.
|
|
|
|
cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset. Defaults to None.
|
|
|
|
iters (int, optional): iters of kmeans algorithm. Defaults to 300.
|
|
|
|
gen_iters (int, optional): iters of genetic algorithm. Defaults to 1000.
|
|
|
|
thresh (float, optional): anchor scale threshold. Defaults to 0.25.
|
|
|
|
"""
|
|
|
|
self.dataset = dataset
|
|
|
|
if cache_path is None:
|
|
|
|
cache_path = self.dataset.data_dir
|
|
|
|
if isinstance(image_size, int):
|
|
|
|
image_size = [image_size] * 2
|
|
|
|
self.image_size = image_size
|
|
|
|
self.iters = iters
|
|
|
|
self.gen_iters = gen_iters
|
|
|
|
self.thresh = thresh
|
|
|
|
super(YOLOAnchorCluster, self).__init__(num_anchors, cache, cache_path)
|
|
|
|
|
|
|
|
def print_result(self, centers):
|
|
|
|
whs = self.whs
|
|
|
|
x, best = self.metric(whs, centers)
|
|
|
|
bpr, aat = (best > self.thresh).mean(), (
|
|
|
|
x > self.thresh).mean() * self.num_anchors
|
|
|
|
logging.info(
|
|
|
|
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' %
|
|
|
|
(self.thresh, bpr, aat))
|
|
|
|
logging.info(
|
|
|
|
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
|
|
|
|
% (self.num_anchors, self.image_size, x.mean(), best.mean(),
|
|
|
|
x[x > self.thresh].mean()))
|
|
|
|
logging.info('%d anchor cluster result: [w, h]' % self.num_anchors)
|
|
|
|
for w, h in centers:
|
|
|
|
logging.info('[%d, %d]' % (w, h))
|
|
|
|
|
|
|
|
def metric(self, whs, centers):
|
|
|
|
r = whs[:, None] / centers[None]
|
|
|
|
x = np.minimum(r, 1. / r).min(2)
|
|
|
|
return x, x.max(1)
|
|
|
|
|
|
|
|
def fitness(self, whs, centers):
|
|
|
|
_, best = self.metric(whs, centers)
|
|
|
|
return (best * (best > self.thresh)).mean()
|
|
|
|
|
|
|
|
def calc_anchors(self):
|
|
|
|
self.whs = self.whs * self.shapes / self.shapes.max(
|
|
|
|
1, keepdims=True) * np.array([self.image_size[::-1]])
|
|
|
|
wh0 = self.whs
|
|
|
|
i = (wh0 < 3.0).any(1).sum()
|
|
|
|
if i:
|
|
|
|
logging.warning('Extremely small objects found. %d of %d '
|
|
|
|
'labels are < 3 pixels in width or height' %
|
|
|
|
(i, len(wh0)))
|
|
|
|
|
|
|
|
wh = wh0[(wh0 >= 2.0).any(1)]
|
|
|
|
logging.info('Running kmeans for %g anchors on %g points...' %
|
|
|
|
(self.num_anchors, len(wh)))
|
|
|
|
s = wh.std(0)
|
|
|
|
centers, dist = kmeans(wh / s, self.num_anchors, iter=self.iters)
|
|
|
|
centers *= s
|
|
|
|
|
|
|
|
f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1
|
|
|
|
pbar = tqdm(
|
|
|
|
range(self.gen_iters),
|
|
|
|
desc='Evolving anchors with Genetic Algorithm')
|
|
|
|
for _ in pbar:
|
|
|
|
v = np.ones(sh)
|
|
|
|
while (v == 1).all():
|
|
|
|
v = ((np.random.random(sh) < mp) * np.random.random() *
|
|
|
|
np.random.randn(*sh) * s + 1).clip(0.3, 3.0)
|
|
|
|
new_centers = (centers.copy() * v).clip(min=2.0)
|
|
|
|
new_f = self.fitness(wh, new_centers)
|
|
|
|
if new_f > f:
|
|
|
|
f, centers = new_f, new_centers.copy()
|
|
|
|
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
|
|
|
|
|
|
|
|
centers = np.round(centers[np.argsort(centers.prod(1))]).astype(
|
|
|
|
int).tolist()
|
|
|
|
return centers
|