|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""
|
|
|
|
@File Description:
|
|
|
|
# json数据集划分,可以通过val_split_rate、val_split_num控制划分比例或个数, keep_val_inTrain可以设定是否在train中保留val相关信息
|
|
|
|
python ./coco_tools/json_Split.py \
|
|
|
|
--json_all_path=./annotations/instances_val2017.json \
|
|
|
|
--json_train_path=./instances_val2017_train.json \
|
|
|
|
--json_val_path=./instances_val2017_val.json
|
|
|
|
"""
|
|
|
|
|
|
|
|
import json
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
def get_annno(df_img_split, df_anno):
|
|
|
|
df_merge = pd.merge(df_img_split, df_anno, on="image_id")
|
|
|
|
df_anno_split = df_merge[df_anno.columns.to_list()]
|
|
|
|
df_anno_split = df_anno_split.sort_values(by='id')
|
|
|
|
return df_anno_split
|
|
|
|
|
|
|
|
|
|
|
|
def js_split(js_all_path, js_train_path, js_val_path, val_split_rate,
|
|
|
|
val_split_num, keep_val_inTrain, image_keyname, anno_keyname):
|
|
|
|
print('Split'.center(100, '-'))
|
|
|
|
print()
|
|
|
|
|
|
|
|
print('json read...\n')
|
|
|
|
|
|
|
|
with open(js_all_path, 'r') as load_f:
|
|
|
|
data = json.load(load_f)
|
|
|
|
df_anno = pd.DataFrame(data[anno_keyname])
|
|
|
|
df_img = pd.DataFrame(data[image_keyname])
|
|
|
|
df_img = df_img.rename(columns={"id": "image_id"})
|
|
|
|
df_img = df_img.sample(frac=1, random_state=0)
|
|
|
|
|
|
|
|
if val_split_num is None:
|
|
|
|
val_split_num = int(val_split_rate * len(df_img))
|
|
|
|
|
|
|
|
if keep_val_inTrain:
|
|
|
|
df_img_train = df_img
|
|
|
|
df_img_val = df_img[:val_split_num]
|
|
|
|
df_anno_train = df_anno
|
|
|
|
df_anno_val = get_annno(df_img_val, df_anno)
|
|
|
|
else:
|
|
|
|
df_img_train = df_img[val_split_num:]
|
|
|
|
df_img_val = df_img[:val_split_num]
|
|
|
|
df_anno_train = get_annno(df_img_train, df_anno)
|
|
|
|
df_anno_val = get_annno(df_img_val, df_anno)
|
|
|
|
df_img_train = df_img_train.rename(columns={"image_id": "id"}).sort_values(
|
|
|
|
by='id')
|
|
|
|
df_img_val = df_img_val.rename(columns={"image_id": "id"}).sort_values(
|
|
|
|
by='id')
|
|
|
|
|
|
|
|
data[image_keyname] = json.loads(df_img_train.to_json(orient='records'))
|
|
|
|
data[anno_keyname] = json.loads(df_anno_train.to_json(orient='records'))
|
|
|
|
str_json = json.dumps(data, ensure_ascii=False)
|
|
|
|
with open(js_train_path, 'w', encoding='utf-8') as file_obj:
|
|
|
|
file_obj.write(str_json)
|
|
|
|
|
|
|
|
data[image_keyname] = json.loads(df_img_val.to_json(orient='records'))
|
|
|
|
data[anno_keyname] = json.loads(df_anno_val.to_json(orient='records'))
|
|
|
|
str_json = json.dumps(data, ensure_ascii=False)
|
|
|
|
with open(js_val_path, 'w', encoding='utf-8') as file_obj:
|
|
|
|
file_obj.write(str_json)
|
|
|
|
|
|
|
|
print('image total %d, train %d, val %d' %
|
|
|
|
(len(df_img), len(df_img_train), len(df_img_val)))
|
|
|
|
print('anno total %d, train %d, val %d' %
|
|
|
|
(len(df_anno), len(df_anno_train), len(df_anno_val)))
|
|
|
|
return df_img
|
|
|
|
|
|
|
|
|
|
|
|
def get_args():
|
|
|
|
parser = argparse.ArgumentParser(description='Json Merge')
|
|
|
|
|
|
|
|
# Parameters
|
|
|
|
parser.add_argument('--json_all_path', type=str, help='json path to split')
|
|
|
|
parser.add_argument(
|
|
|
|
'--json_train_path',
|
|
|
|
type=str,
|
|
|
|
help='json path to save the split result -- train part')
|
|
|
|
parser.add_argument(
|
|
|
|
'--json_val_path',
|
|
|
|
type=str,
|
|
|
|
help='json path to save the split result -- val part')
|
|
|
|
parser.add_argument(
|
|
|
|
'--val_split_rate',
|
|
|
|
type=float,
|
|
|
|
default=0.1,
|
|
|
|
help='val image number rate in total image, default is 0.1; if val_split_num is set, val_split_rate will not work'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--val_split_num',
|
|
|
|
type=int,
|
|
|
|
default=None,
|
|
|
|
help='val image number in total image, default is None; if val_split_num is set, val_split_rate will not work'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--keep_val_inTrain',
|
|
|
|
type=bool,
|
|
|
|
default=False,
|
|
|
|
help='if true, val part will be in train as well; which means that the content of json_train_path is the same as the content of json_all_path'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--image_keyname',
|
|
|
|
type=str,
|
|
|
|
default='images',
|
|
|
|
help='image key name in json, default images')
|
|
|
|
parser.add_argument(
|
|
|
|
'--anno_keyname',
|
|
|
|
type=str,
|
|
|
|
default='annotations',
|
|
|
|
help='annotation key name in json, default annotations')
|
|
|
|
parser.add_argument(
|
|
|
|
'-Args_show',
|
|
|
|
'--Args_show',
|
|
|
|
type=bool,
|
|
|
|
default=True,
|
|
|
|
help='Args_show(default: True), if True, show args info')
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
if args.Args_show:
|
|
|
|
print('Args'.center(100, '-'))
|
|
|
|
for k, v in vars(args).items():
|
|
|
|
print('%s = %s' % (k, v))
|
|
|
|
print()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
args = get_args()
|
|
|
|
js_split(args.json_all_path, args.json_train_path, args.json_val_path,
|
|
|
|
args.val_split_rate, args.val_split_num, args.keep_val_inTrain,
|
|
|
|
args.image_keyname, args.anno_keyname)
|