|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
from collections import OrderedDict
|
|
|
|
from operator import attrgetter
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
import paddlers
|
|
|
|
import paddlers.models.ppseg as ppseg
|
|
|
|
import paddlers.rs_models.cd as cmcd
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
from paddlers.models import seg_losses
|
|
|
|
from paddlers.transforms import Resize, decode_image
|
|
|
|
from paddlers.utils import get_single_card_bs
|
|
|
|
from paddlers.utils.checkpoint import seg_pretrain_weights_dict
|
|
|
|
from .base import BaseModel
|
|
|
|
from .utils import seg_metrics as metrics
|
|
|
|
from .utils.infer_nets import InferCDNet
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
"CDNet", "FCEarlyFusion", "FCSiamConc", "FCSiamDiff", "STANet", "BIT",
|
|
|
|
"SNUNet", "DSIFN", "DSAMNet", "ChangeStar", "ChangeFormer"
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class BaseChangeDetector(BaseModel):
|
|
|
|
def __init__(self,
|
|
|
|
model_name,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
self.init_params = locals()
|
|
|
|
if 'with_net' in self.init_params:
|
|
|
|
del self.init_params['with_net']
|
|
|
|
super(BaseChangeDetector, self).__init__('change_detector')
|
|
|
|
if model_name not in __all__:
|
|
|
|
raise ValueError("ERROR: There is no model named {}.".format(
|
|
|
|
model_name))
|
|
|
|
self.model_name = model_name
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.use_mixed_loss = use_mixed_loss
|
|
|
|
self.losses = losses
|
|
|
|
self.labels = None
|
|
|
|
if params.get('with_net', True):
|
|
|
|
params.pop('with_net', None)
|
|
|
|
self.net = self.build_net(**params)
|
|
|
|
self.find_unused_parameters = True
|
|
|
|
|
|
|
|
def build_net(self, **params):
|
|
|
|
# TODO: add other model
|
|
|
|
net = cmcd.__dict__[self.model_name](num_classes=self.num_classes,
|
|
|
|
**params)
|
|
|
|
return net
|
|
|
|
|
|
|
|
def _build_inference_net(self):
|
|
|
|
infer_net = InferCDNet(self.net)
|
|
|
|
infer_net.eval()
|
|
|
|
return infer_net
|
|
|
|
|
|
|
|
def _fix_transforms_shape(self, image_shape):
|
|
|
|
if hasattr(self, 'test_transforms'):
|
|
|
|
if self.test_transforms is not None:
|
|
|
|
has_resize_op = False
|
|
|
|
resize_op_idx = -1
|
|
|
|
normalize_op_idx = len(self.test_transforms.transforms)
|
|
|
|
for idx, op in enumerate(self.test_transforms.transforms):
|
|
|
|
name = op.__class__.__name__
|
|
|
|
if name == 'Normalize':
|
|
|
|
normalize_op_idx = idx
|
|
|
|
if 'Resize' in name:
|
|
|
|
has_resize_op = True
|
|
|
|
resize_op_idx = idx
|
|
|
|
|
|
|
|
if not has_resize_op:
|
|
|
|
self.test_transforms.transforms.insert(
|
|
|
|
normalize_op_idx, Resize(target_size=image_shape))
|
|
|
|
else:
|
|
|
|
self.test_transforms.transforms[resize_op_idx] = Resize(
|
|
|
|
target_size=image_shape)
|
|
|
|
|
|
|
|
def _get_test_inputs(self, image_shape):
|
|
|
|
if image_shape is not None:
|
|
|
|
if len(image_shape) == 2:
|
|
|
|
image_shape = [1, 3] + image_shape
|
|
|
|
self._fix_transforms_shape(image_shape[-2:])
|
|
|
|
else:
|
|
|
|
image_shape = [None, 3, -1, -1]
|
|
|
|
self.fixed_input_shape = image_shape
|
|
|
|
return [
|
|
|
|
InputSpec(
|
|
|
|
shape=image_shape, name='image', dtype='float32'), InputSpec(
|
|
|
|
shape=image_shape, name='image2', dtype='float32')
|
|
|
|
]
|
|
|
|
|
|
|
|
def run(self, net, inputs, mode):
|
|
|
|
net_out = net(inputs[0], inputs[1])
|
|
|
|
logit = net_out[0]
|
|
|
|
outputs = OrderedDict()
|
|
|
|
if mode == 'test':
|
|
|
|
origin_shape = inputs[2]
|
|
|
|
if self.status == 'Infer':
|
|
|
|
label_map_list, score_map_list = self._postprocess(
|
|
|
|
net_out, origin_shape, transforms=inputs[3])
|
|
|
|
else:
|
|
|
|
logit_list = self._postprocess(
|
|
|
|
logit, origin_shape, transforms=inputs[3])
|
|
|
|
label_map_list = []
|
|
|
|
score_map_list = []
|
|
|
|
for logit in logit_list:
|
|
|
|
logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
|
|
|
|
label_map_list.append(
|
|
|
|
paddle.argmax(
|
|
|
|
logit, axis=-1, keepdim=False, dtype='int32')
|
|
|
|
.squeeze().numpy())
|
|
|
|
score_map_list.append(
|
|
|
|
F.softmax(
|
|
|
|
logit, axis=-1).squeeze().numpy().astype('float32'))
|
|
|
|
outputs['label_map'] = label_map_list
|
|
|
|
outputs['score_map'] = score_map_list
|
|
|
|
|
|
|
|
if mode == 'eval':
|
|
|
|
if self.status == 'Infer':
|
|
|
|
pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
|
|
|
|
else:
|
|
|
|
pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
|
|
|
|
label = inputs[2]
|
|
|
|
if label.ndim == 3:
|
|
|
|
paddle.unsqueeze_(label, axis=1)
|
|
|
|
if label.ndim != 4:
|
|
|
|
raise ValueError("Expected label.ndim == 4 but got {}".format(
|
|
|
|
label.ndim))
|
|
|
|
origin_shape = [label.shape[-2:]]
|
|
|
|
pred = self._postprocess(
|
|
|
|
pred, origin_shape, transforms=inputs[3])[0] # NCHW
|
|
|
|
intersect_area, pred_area, label_area = ppseg.utils.metrics.calculate_area(
|
|
|
|
pred, label, self.num_classes)
|
|
|
|
outputs['intersect_area'] = intersect_area
|
|
|
|
outputs['pred_area'] = pred_area
|
|
|
|
outputs['label_area'] = label_area
|
|
|
|
outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
|
|
|
|
self.num_classes)
|
|
|
|
if mode == 'train':
|
|
|
|
if hasattr(net, 'USE_MULTITASK_DECODER') and \
|
|
|
|
net.USE_MULTITASK_DECODER is True:
|
|
|
|
# CD+Seg
|
|
|
|
if len(inputs) != 5:
|
|
|
|
raise ValueError(
|
|
|
|
"Cannot perform loss computation with {} inputs.".
|
|
|
|
format(len(inputs)))
|
|
|
|
labels_list = [
|
|
|
|
inputs[2 + idx]
|
|
|
|
for idx in map(attrgetter('value'), net.OUT_TYPES)
|
|
|
|
]
|
|
|
|
loss_list = metrics.multitask_loss_computation(
|
|
|
|
logits_list=net_out,
|
|
|
|
labels_list=labels_list,
|
|
|
|
losses=self.losses)
|
|
|
|
else:
|
|
|
|
loss_list = metrics.loss_computation(
|
|
|
|
logits_list=net_out, labels=inputs[2], losses=self.losses)
|
|
|
|
loss = sum(loss_list)
|
|
|
|
outputs['loss'] = loss
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
if isinstance(self.use_mixed_loss, bool):
|
|
|
|
if self.use_mixed_loss:
|
|
|
|
losses = [
|
|
|
|
seg_losses.CrossEntropyLoss(),
|
|
|
|
seg_losses.LovaszSoftmaxLoss()
|
|
|
|
]
|
|
|
|
coef = [.8, .2]
|
|
|
|
loss_type = [seg_losses.MixedLoss(losses=losses, coef=coef), ]
|
|
|
|
else:
|
|
|
|
loss_type = [seg_losses.CrossEntropyLoss()]
|
|
|
|
else:
|
|
|
|
losses, coef = list(zip(*self.use_mixed_loss))
|
|
|
|
if not set(losses).issubset(
|
|
|
|
['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
|
|
|
|
raise ValueError(
|
|
|
|
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
|
|
|
|
)
|
|
|
|
losses = [getattr(seg_losses, loss)() for loss in losses]
|
|
|
|
loss_type = [seg_losses.MixedLoss(losses=losses, coef=list(coef))]
|
|
|
|
loss_coef = [1.0]
|
|
|
|
losses = {'types': loss_type, 'coef': loss_coef}
|
|
|
|
return losses
|
|
|
|
|
|
|
|
def default_optimizer(self,
|
|
|
|
parameters,
|
|
|
|
learning_rate,
|
|
|
|
num_epochs,
|
|
|
|
num_steps_each_epoch,
|
|
|
|
lr_decay_power=0.9):
|
|
|
|
decay_step = num_epochs * num_steps_each_epoch
|
|
|
|
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
|
|
|
|
learning_rate, decay_step, end_lr=0, power=lr_decay_power)
|
|
|
|
optimizer = paddle.optimizer.Momentum(
|
|
|
|
learning_rate=lr_scheduler,
|
|
|
|
parameters=parameters,
|
|
|
|
momentum=0.9,
|
|
|
|
weight_decay=4e-5)
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
def train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
pretrain_weights=None,
|
|
|
|
learning_rate=0.01,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None):
|
|
|
|
"""
|
|
|
|
Train the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.CDDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.CDDataset|None, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
pretrain_weights (str|None, optional): None or name/path of pretrained
|
|
|
|
weights. If None, no pretrained weights will be loaded. Defaults to None.
|
|
|
|
learning_rate (float, optional): Learning rate for training. Defaults to .01.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy. Defaults
|
|
|
|
to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
training from. If None, no training checkpoint will be resumed. At most
|
|
|
|
Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
|
|
|
|
Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.status == 'Infer':
|
|
|
|
logging.error(
|
|
|
|
"Exported inference model does not support training.",
|
|
|
|
exit=True)
|
|
|
|
if pretrain_weights is not None and resume_checkpoint is not None:
|
|
|
|
logging.error(
|
|
|
|
"pretrain_weights and resume_checkpoint cannot be set simultaneously.",
|
|
|
|
exit=True)
|
|
|
|
self.labels = train_dataset.labels
|
|
|
|
if self.losses is None:
|
|
|
|
self.losses = self.default_loss()
|
|
|
|
|
|
|
|
if optimizer is None:
|
|
|
|
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
|
|
self.optimizer = self.default_optimizer(
|
|
|
|
self.net.parameters(), learning_rate, num_epochs,
|
|
|
|
num_steps_each_epoch, lr_decay_power)
|
|
|
|
else:
|
|
|
|
self.optimizer = optimizer
|
|
|
|
|
|
|
|
if pretrain_weights is not None and not osp.exists(pretrain_weights):
|
|
|
|
if pretrain_weights not in seg_pretrain_weights_dict[
|
|
|
|
self.model_name]:
|
|
|
|
logging.warning(
|
|
|
|
"Path of pretrain_weights('{}') does not exist!".format(
|
|
|
|
pretrain_weights))
|
|
|
|
logging.warning("Pretrain_weights is forcibly set to '{}'. "
|
|
|
|
"If don't want to use pretrain weights, "
|
|
|
|
"set pretrain_weights to be None.".format(
|
|
|
|
seg_pretrain_weights_dict[self.model_name][
|
|
|
|
0]))
|
|
|
|
pretrain_weights = seg_pretrain_weights_dict[self.model_name][0]
|
|
|
|
elif pretrain_weights is not None and osp.exists(pretrain_weights):
|
|
|
|
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
|
|
logging.error(
|
|
|
|
"Invalid pretrain weights. Please specify a '.pdparams' file.",
|
|
|
|
exit=True)
|
|
|
|
pretrained_dir = osp.join(save_dir, 'pretrain')
|
|
|
|
is_backbone_weights = pretrain_weights == 'IMAGENET'
|
|
|
|
self.net_initialize(
|
|
|
|
pretrain_weights=pretrain_weights,
|
|
|
|
save_dir=pretrained_dir,
|
|
|
|
resume_checkpoint=resume_checkpoint,
|
|
|
|
is_backbone_weights=is_backbone_weights)
|
|
|
|
|
|
|
|
self.train_loop(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl)
|
|
|
|
|
|
|
|
def quant_aware_train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
learning_rate=0.0001,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None,
|
|
|
|
quant_config=None):
|
|
|
|
"""
|
|
|
|
Quantization-aware training.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.CDDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.CDDataset, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
learning_rate (float, optional): Learning rate for training.
|
|
|
|
Defaults to .0001.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy.
|
|
|
|
Defaults to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
quant_config (dict|None, optional): Quantization configuration. If None,
|
|
|
|
a default rule of thumb configuration will be used. Defaults to None.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
quantization-aware training from. If None, no training checkpoint will
|
|
|
|
be resumed. Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._prepare_qat(quant_config)
|
|
|
|
self.train(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
optimizer=optimizer,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
pretrain_weights=None,
|
|
|
|
learning_rate=learning_rate,
|
|
|
|
lr_decay_power=lr_decay_power,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl,
|
|
|
|
resume_checkpoint=resume_checkpoint)
|
|
|
|
|
|
|
|
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
|
|
|
|
"""
|
|
|
|
Evaluate the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
eval_dataset (paddlers.datasets.CDDataset): Evaluation dataset.
|
|
|
|
batch_size (int, optional): Total batch size among all cards used for
|
|
|
|
evaluation. Defaults to 1.
|
|
|
|
return_details (bool, optional): Whether to return evaluation details.
|
|
|
|
Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
If `return_details` is False, return collections.OrderedDict with
|
|
|
|
key-value pairs:
|
|
|
|
For binary change detection (number of classes == 2), the key-value
|
|
|
|
pairs are like:
|
|
|
|
{"iou": `intersection over union for the change class`,
|
|
|
|
"f1": `F1 score for the change class`,
|
|
|
|
"oacc": `overall accuracy`,
|
|
|
|
"kappa": ` kappa coefficient`}.
|
|
|
|
For multi-class change detection (number of classes > 2), the key-value
|
|
|
|
pairs are like:
|
|
|
|
{"miou": `mean intersection over union`,
|
|
|
|
"category_iou": `category-wise mean intersection over union`,
|
|
|
|
"oacc": `overall accuracy`,
|
|
|
|
"category_acc": `category-wise accuracy`,
|
|
|
|
"kappa": ` kappa coefficient`,
|
|
|
|
"category_F1-score": `F1 score`}.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._check_transforms(eval_dataset.transforms, 'eval')
|
|
|
|
|
|
|
|
self.net.eval()
|
|
|
|
nranks = paddle.distributed.get_world_size()
|
|
|
|
local_rank = paddle.distributed.get_rank()
|
|
|
|
if nranks > 1:
|
|
|
|
# Initialize parallel environment if not done.
|
|
|
|
if not (paddle.distributed.parallel.parallel_helper.
|
|
|
|
_is_parallel_ctx_initialized()):
|
|
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
|
|
|
|
batch_size_each_card = get_single_card_bs(batch_size)
|
|
|
|
if batch_size_each_card > 1:
|
|
|
|
batch_size_each_card = 1
|
|
|
|
batch_size = batch_size_each_card * paddlers.env_info['num']
|
|
|
|
logging.warning(
|
|
|
|
"ChangeDetector only supports batch_size=1 for each gpu/cpu card " \
|
|
|
|
"during evaluation, so batch_size " \
|
|
|
|
"is forcibly set to {}.".format(batch_size)
|
|
|
|
)
|
|
|
|
self.eval_data_loader = self.build_data_loader(
|
|
|
|
eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
|
|
|
|
|
intersect_area_all = 0
|
|
|
|
pred_area_all = 0
|
|
|
|
label_area_all = 0
|
|
|
|
conf_mat_all = []
|
|
|
|
logging.info(
|
|
|
|
"Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
|
eval_dataset.num_samples,
|
|
|
|
math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
|
|
|
|
with paddle.no_grad():
|
|
|
|
for step, data in enumerate(self.eval_data_loader):
|
|
|
|
data.append(eval_dataset.transforms.transforms)
|
|
|
|
outputs = self.run(self.net, data, 'eval')
|
|
|
|
pred_area = outputs['pred_area']
|
|
|
|
label_area = outputs['label_area']
|
|
|
|
intersect_area = outputs['intersect_area']
|
|
|
|
conf_mat = outputs['conf_mat']
|
|
|
|
|
|
|
|
# Gather from all ranks
|
|
|
|
if nranks > 1:
|
|
|
|
intersect_area_list = []
|
|
|
|
pred_area_list = []
|
|
|
|
label_area_list = []
|
|
|
|
conf_mat_list = []
|
|
|
|
paddle.distributed.all_gather(intersect_area_list,
|
|
|
|
intersect_area)
|
|
|
|
paddle.distributed.all_gather(pred_area_list, pred_area)
|
|
|
|
paddle.distributed.all_gather(label_area_list, label_area)
|
|
|
|
paddle.distributed.all_gather(conf_mat_list, conf_mat)
|
|
|
|
|
|
|
|
# Some image has been evaluated and should be eliminated in last iter
|
|
|
|
if (step + 1) * nranks > len(eval_dataset):
|
|
|
|
valid = len(eval_dataset) - step * nranks
|
|
|
|
intersect_area_list = intersect_area_list[:valid]
|
|
|
|
pred_area_list = pred_area_list[:valid]
|
|
|
|
label_area_list = label_area_list[:valid]
|
|
|
|
conf_mat_list = conf_mat_list[:valid]
|
|
|
|
|
|
|
|
intersect_area_all += sum(intersect_area_list)
|
|
|
|
pred_area_all += sum(pred_area_list)
|
|
|
|
label_area_all += sum(label_area_list)
|
|
|
|
conf_mat_all.extend(conf_mat_list)
|
|
|
|
|
|
|
|
else:
|
|
|
|
intersect_area_all = intersect_area_all + intersect_area
|
|
|
|
pred_area_all = pred_area_all + pred_area
|
|
|
|
label_area_all = label_area_all + label_area
|
|
|
|
conf_mat_all.append(conf_mat)
|
|
|
|
class_iou, miou = ppseg.utils.metrics.mean_iou(
|
|
|
|
intersect_area_all, pred_area_all, label_area_all)
|
|
|
|
# TODO 确认是按oacc还是macc
|
|
|
|
class_acc, oacc = ppseg.utils.metrics.accuracy(intersect_area_all,
|
|
|
|
pred_area_all)
|
|
|
|
kappa = ppseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
|
|
|
|
label_area_all)
|
|
|
|
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
|
|
|
|
label_area_all)
|
|
|
|
|
|
|
|
if len(class_acc) > 2:
|
|
|
|
eval_metrics = OrderedDict(
|
|
|
|
zip([
|
|
|
|
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
|
|
|
|
'category_F1-score'
|
|
|
|
], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
|
|
|
|
else:
|
|
|
|
eval_metrics = OrderedDict(
|
|
|
|
zip(['iou', 'f1', 'oacc', 'kappa'],
|
|
|
|
[class_iou[1], category_f1score[1], oacc, kappa]))
|
|
|
|
|
|
|
|
if return_details:
|
|
|
|
conf_mat = sum(conf_mat_all)
|
|
|
|
eval_details = {'confusion_matrix': conf_mat.tolist()}
|
|
|
|
return eval_metrics, eval_details
|
|
|
|
return eval_metrics
|
|
|
|
|
|
|
|
def predict(self, img_file, transforms=None):
|
|
|
|
"""
|
|
|
|
Do inference.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file (list[tuple] | tuple[str|np.ndarray]): Tuple of image paths or
|
|
|
|
decoded image data for bi-temporal images, which also could constitute
|
|
|
|
a list, meaning all image pairs to be predicted as a mini-batch.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Transforms for
|
|
|
|
inputs. If None, the transforms for evaluation process will be used.
|
|
|
|
Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
If `img_file` is a tuple of string or np.array, the result is a dict with
|
|
|
|
the following key-value pairs:
|
|
|
|
label_map (np.ndarray): Predicted label map (HW).
|
|
|
|
score_map (np.ndarray): Prediction score map (HWC).
|
|
|
|
|
|
|
|
If `img_file` is a list, the result is a list composed of dicts with the
|
|
|
|
above keys.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if transforms is None and not hasattr(self, 'test_transforms'):
|
|
|
|
raise ValueError("transforms need to be defined, now is None.")
|
|
|
|
if transforms is None:
|
|
|
|
transforms = self.test_transforms
|
|
|
|
if isinstance(img_file, tuple):
|
|
|
|
if not len(img_file) == 2 and any(
|
|
|
|
map(lambda obj: not isinstance(obj, (str, np.ndarray)),
|
|
|
|
img_file)):
|
|
|
|
raise TypeError
|
|
|
|
images = [img_file]
|
|
|
|
else:
|
|
|
|
images = img_file
|
|
|
|
batch_im1, batch_im2, batch_origin_shape = self._preprocess(
|
|
|
|
images, transforms, self.model_type)
|
|
|
|
self.net.eval()
|
|
|
|
data = (batch_im1, batch_im2, batch_origin_shape, transforms.transforms)
|
|
|
|
outputs = self.run(self.net, data, 'test')
|
|
|
|
label_map_list = outputs['label_map']
|
|
|
|
score_map_list = outputs['score_map']
|
|
|
|
if isinstance(img_file, list):
|
|
|
|
prediction = [{
|
|
|
|
'label_map': l,
|
|
|
|
'score_map': s
|
|
|
|
} for l, s in zip(label_map_list, score_map_list)]
|
|
|
|
else:
|
|
|
|
prediction = {
|
|
|
|
'label_map': label_map_list[0],
|
|
|
|
'score_map': score_map_list[0]
|
|
|
|
}
|
|
|
|
return prediction
|
|
|
|
|
|
|
|
def slider_predict(self,
|
|
|
|
img_file,
|
|
|
|
save_dir,
|
|
|
|
block_size,
|
|
|
|
overlap=36,
|
|
|
|
transforms=None):
|
|
|
|
"""
|
|
|
|
Do inference.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file (tuple[str]): Tuple of image paths.
|
|
|
|
save_dir (str): Directory that contains saved geotiff file.
|
|
|
|
block_size (list[int] | tuple[int] | int, optional): Size of block.
|
|
|
|
overlap (list[int] | tuple[int] | int, optional): Overlap between two blocks.
|
|
|
|
Defaults to 36.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Transforms for inputs.
|
|
|
|
If None, the transforms for evaluation process will be used. Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
try:
|
|
|
|
from osgeo import gdal
|
|
|
|
except:
|
|
|
|
import gdal
|
|
|
|
|
|
|
|
if not isinstance(img_file, tuple) or len(img_file) != 2:
|
|
|
|
raise ValueError("`img_file` must be a tuple of length 2.")
|
|
|
|
if isinstance(block_size, int):
|
|
|
|
block_size = (block_size, block_size)
|
|
|
|
elif isinstance(block_size, (tuple, list)) and len(block_size) == 2:
|
|
|
|
block_size = tuple(block_size)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"`block_size` must be a tuple/list of length 2 or an integer.")
|
|
|
|
if isinstance(overlap, int):
|
|
|
|
overlap = (overlap, overlap)
|
|
|
|
elif isinstance(overlap, (tuple, list)) and len(overlap) == 2:
|
|
|
|
overlap = tuple(overlap)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"`overlap` must be a tuple/list of length 2 or an integer.")
|
|
|
|
|
|
|
|
src1_data = gdal.Open(img_file[0])
|
|
|
|
src2_data = gdal.Open(img_file[1])
|
|
|
|
width = src1_data.RasterXSize
|
|
|
|
height = src1_data.RasterYSize
|
|
|
|
bands = src1_data.RasterCount
|
|
|
|
|
|
|
|
driver = gdal.GetDriverByName("GTiff")
|
|
|
|
file_name = osp.splitext(osp.normpath(img_file[0]).split(os.sep)[-1])[
|
|
|
|
0] + ".tif"
|
|
|
|
if not osp.exists(save_dir):
|
|
|
|
os.makedirs(save_dir)
|
|
|
|
save_file = osp.join(save_dir, file_name)
|
|
|
|
dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte)
|
|
|
|
dst_data.SetGeoTransform(src1_data.GetGeoTransform())
|
|
|
|
dst_data.SetProjection(src1_data.GetProjection())
|
|
|
|
band = dst_data.GetRasterBand(1)
|
|
|
|
band.WriteArray(255 * np.ones((height, width), dtype="uint8"))
|
|
|
|
|
|
|
|
step = np.array(block_size) - np.array(overlap)
|
|
|
|
for yoff in range(0, height, step[1]):
|
|
|
|
for xoff in range(0, width, step[0]):
|
|
|
|
xsize, ysize = block_size
|
|
|
|
if xoff + xsize > width:
|
|
|
|
xsize = int(width - xoff)
|
|
|
|
if yoff + ysize > height:
|
|
|
|
ysize = int(height - yoff)
|
|
|
|
im1 = src1_data.ReadAsArray(
|
|
|
|
int(xoff), int(yoff), xsize, ysize).transpose((1, 2, 0))
|
|
|
|
im2 = src2_data.ReadAsArray(
|
|
|
|
int(xoff), int(yoff), xsize, ysize).transpose((1, 2, 0))
|
|
|
|
# Fill
|
|
|
|
h, w = im1.shape[:2]
|
|
|
|
im1_fill = np.zeros(
|
|
|
|
(block_size[1], block_size[0], bands), dtype=im1.dtype)
|
|
|
|
im2_fill = im1_fill.copy()
|
|
|
|
im1_fill[:h, :w, :] = im1
|
|
|
|
im2_fill[:h, :w, :] = im2
|
|
|
|
im_fill = (im1_fill, im2_fill)
|
|
|
|
# Predict
|
|
|
|
pred = self.predict(im_fill,
|
|
|
|
transforms)["label_map"].astype("uint8")
|
|
|
|
# Overlap
|
|
|
|
rd_block = band.ReadAsArray(int(xoff), int(yoff), xsize, ysize)
|
|
|
|
mask = (rd_block == pred[:h, :w]) | (rd_block == 255)
|
|
|
|
temp = pred[:h, :w].copy()
|
|
|
|
temp[mask == False] = 0
|
|
|
|
band.WriteArray(temp, int(xoff), int(yoff))
|
|
|
|
dst_data.FlushCache()
|
|
|
|
dst_data = None
|
|
|
|
print("GeoTiff saved in {}.".format(save_file))
|
|
|
|
|
|
|
|
def _preprocess(self, images, transforms, to_tensor=True):
|
|
|
|
self._check_transforms(transforms, 'test')
|
|
|
|
batch_im1, batch_im2 = list(), list()
|
|
|
|
batch_ori_shape = list()
|
|
|
|
for im1, im2 in images:
|
|
|
|
if isinstance(im1, str) or isinstance(im2, str):
|
|
|
|
im1 = decode_image(im1, to_rgb=False)
|
|
|
|
im2 = decode_image(im2, to_rgb=False)
|
|
|
|
ori_shape = im1.shape[:2]
|
|
|
|
# XXX: sample do not contain 'image_t1' and 'image_t2'.
|
|
|
|
sample = {'image': im1, 'image2': im2}
|
|
|
|
im1, im2 = transforms(sample)[:2]
|
|
|
|
batch_im1.append(im1)
|
|
|
|
batch_im2.append(im2)
|
|
|
|
batch_ori_shape.append(ori_shape)
|
|
|
|
if to_tensor:
|
|
|
|
batch_im1 = paddle.to_tensor(batch_im1)
|
|
|
|
batch_im2 = paddle.to_tensor(batch_im2)
|
|
|
|
else:
|
|
|
|
batch_im1 = np.asarray(batch_im1)
|
|
|
|
batch_im2 = np.asarray(batch_im2)
|
|
|
|
|
|
|
|
return batch_im1, batch_im2, batch_ori_shape
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_transforms_shape_info(batch_ori_shape, transforms):
|
|
|
|
batch_restore_list = list()
|
|
|
|
for ori_shape in batch_ori_shape:
|
|
|
|
restore_list = list()
|
|
|
|
h, w = ori_shape[0], ori_shape[1]
|
|
|
|
for op in transforms:
|
|
|
|
if op.__class__.__name__ == 'Resize':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
h, w = op.target_size
|
|
|
|
elif op.__class__.__name__ == 'ResizeByShort':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_short_size = min(h, w)
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.short_size) / float(im_short_size)
|
|
|
|
if 0 < op.max_size < np.round(scale * im_long_size):
|
|
|
|
scale = float(op.max_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'ResizeByLong':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.long_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'Pad':
|
|
|
|
if op.target_size:
|
|
|
|
target_h, target_w = op.target_size
|
|
|
|
else:
|
|
|
|
target_h = int(
|
|
|
|
(np.ceil(h / op.size_divisor) * op.size_divisor))
|
|
|
|
target_w = int(
|
|
|
|
(np.ceil(w / op.size_divisor) * op.size_divisor))
|
|
|
|
|
|
|
|
if op.pad_mode == -1:
|
|
|
|
offsets = op.offsets
|
|
|
|
elif op.pad_mode == 0:
|
|
|
|
offsets = [0, 0]
|
|
|
|
elif op.pad_mode == 1:
|
|
|
|
offsets = [(target_h - h) // 2, (target_w - w) // 2]
|
|
|
|
else:
|
|
|
|
offsets = [target_h - h, target_w - w]
|
|
|
|
restore_list.append(('padding', (h, w), offsets))
|
|
|
|
h, w = target_h, target_w
|
|
|
|
|
|
|
|
batch_restore_list.append(restore_list)
|
|
|
|
return batch_restore_list
|
|
|
|
|
|
|
|
def _postprocess(self, batch_pred, batch_origin_shape, transforms):
|
|
|
|
batch_restore_list = BaseChangeDetector.get_transforms_shape_info(
|
|
|
|
batch_origin_shape, transforms)
|
|
|
|
if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
|
|
|
|
return self._infer_postprocess(
|
|
|
|
batch_label_map=batch_pred[0],
|
|
|
|
batch_score_map=batch_pred[1],
|
|
|
|
batch_restore_list=batch_restore_list)
|
|
|
|
results = []
|
|
|
|
if batch_pred.dtype == paddle.float32:
|
|
|
|
mode = 'bilinear'
|
|
|
|
else:
|
|
|
|
mode = 'nearest'
|
|
|
|
for pred, restore_list in zip(batch_pred, batch_restore_list):
|
|
|
|
pred = paddle.unsqueeze(pred, axis=0)
|
|
|
|
for item in restore_list[::-1]:
|
|
|
|
h, w = item[1][0], item[1][1]
|
|
|
|
if item[0] == 'resize':
|
|
|
|
pred = F.interpolate(
|
|
|
|
pred, (h, w), mode=mode, data_format='NCHW')
|
|
|
|
elif item[0] == 'padding':
|
|
|
|
x, y = item[2]
|
|
|
|
pred = pred[:, :, y:y + h, x:x + w]
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
results.append(pred)
|
|
|
|
return results
|
|
|
|
|
|
|
|
def _infer_postprocess(self, batch_label_map, batch_score_map,
|
|
|
|
batch_restore_list):
|
|
|
|
label_maps = []
|
|
|
|
score_maps = []
|
|
|
|
for label_map, score_map, restore_list in zip(
|
|
|
|
batch_label_map, batch_score_map, batch_restore_list):
|
|
|
|
if not isinstance(label_map, np.ndarray):
|
|
|
|
label_map = paddle.unsqueeze(label_map, axis=[0, 3])
|
|
|
|
score_map = paddle.unsqueeze(score_map, axis=0)
|
|
|
|
for item in restore_list[::-1]:
|
|
|
|
h, w = item[1][0], item[1][1]
|
|
|
|
if item[0] == 'resize':
|
|
|
|
if isinstance(label_map, np.ndarray):
|
|
|
|
label_map = cv2.resize(
|
|
|
|
label_map, (w, h), interpolation=cv2.INTER_NEAREST)
|
|
|
|
score_map = cv2.resize(
|
|
|
|
score_map, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
else:
|
|
|
|
label_map = F.interpolate(
|
|
|
|
label_map, (h, w),
|
|
|
|
mode='nearest',
|
|
|
|
data_format='NHWC')
|
|
|
|
score_map = F.interpolate(
|
|
|
|
score_map, (h, w),
|
|
|
|
mode='bilinear',
|
|
|
|
data_format='NHWC')
|
|
|
|
elif item[0] == 'padding':
|
|
|
|
x, y = item[2]
|
|
|
|
if isinstance(label_map, np.ndarray):
|
|
|
|
label_map = label_map[..., y:y + h, x:x + w]
|
|
|
|
score_map = score_map[..., y:y + h, x:x + w]
|
|
|
|
else:
|
|
|
|
label_map = label_map[:, :, y:y + h, x:x + w]
|
|
|
|
score_map = score_map[:, :, y:y + h, x:x + w]
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
label_map = label_map.squeeze()
|
|
|
|
score_map = score_map.squeeze()
|
|
|
|
if not isinstance(label_map, np.ndarray):
|
|
|
|
label_map = label_map.numpy()
|
|
|
|
score_map = score_map.numpy()
|
|
|
|
label_maps.append(label_map.squeeze())
|
|
|
|
score_maps.append(score_map.squeeze())
|
|
|
|
return label_maps, score_maps
|
|
|
|
|
|
|
|
def _check_transforms(self, transforms, mode):
|
|
|
|
super()._check_transforms(transforms, mode)
|
|
|
|
if not isinstance(transforms.arrange,
|
|
|
|
paddlers.transforms.ArrangeChangeDetector):
|
|
|
|
raise TypeError(
|
|
|
|
"`transforms.arrange` must be an ArrangeChangeDetector object.")
|
|
|
|
|
|
|
|
def set_losses(self, losses, weights=None):
|
|
|
|
if weights is None:
|
|
|
|
weights = [1. for _ in range(len(losses))]
|
|
|
|
self.losses = {'types': losses, 'coef': weights}
|
|
|
|
|
|
|
|
|
|
|
|
class CDNet(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=6,
|
|
|
|
**params):
|
|
|
|
params.update({'in_channels': in_channels})
|
|
|
|
super(CDNet, self).__init__(
|
|
|
|
model_name='CDNet',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class FCEarlyFusion(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=6,
|
|
|
|
use_dropout=False,
|
|
|
|
**params):
|
|
|
|
params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
|
|
|
|
super(FCEarlyFusion, self).__init__(
|
|
|
|
model_name='FCEarlyFusion',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class FCSiamConc(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=3,
|
|
|
|
use_dropout=False,
|
|
|
|
**params):
|
|
|
|
params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
|
|
|
|
super(FCSiamConc, self).__init__(
|
|
|
|
model_name='FCSiamConc',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class FCSiamDiff(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=3,
|
|
|
|
use_dropout=False,
|
|
|
|
**params):
|
|
|
|
params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
|
|
|
|
super(FCSiamDiff, self).__init__(
|
|
|
|
model_name='FCSiamDiff',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class STANet(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=3,
|
|
|
|
att_type='BAM',
|
|
|
|
ds_factor=1,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'in_channels': in_channels,
|
|
|
|
'att_type': att_type,
|
|
|
|
'ds_factor': ds_factor
|
|
|
|
})
|
|
|
|
super(STANet, self).__init__(
|
|
|
|
model_name='STANet',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class BIT(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=3,
|
|
|
|
backbone='resnet18',
|
|
|
|
n_stages=4,
|
|
|
|
use_tokenizer=True,
|
|
|
|
token_len=4,
|
|
|
|
pool_mode='max',
|
|
|
|
pool_size=2,
|
|
|
|
enc_with_pos=True,
|
|
|
|
enc_depth=1,
|
|
|
|
enc_head_dim=64,
|
|
|
|
dec_depth=8,
|
|
|
|
dec_head_dim=8,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'in_channels': in_channels,
|
|
|
|
'backbone': backbone,
|
|
|
|
'n_stages': n_stages,
|
|
|
|
'use_tokenizer': use_tokenizer,
|
|
|
|
'token_len': token_len,
|
|
|
|
'pool_mode': pool_mode,
|
|
|
|
'pool_size': pool_size,
|
|
|
|
'enc_with_pos': enc_with_pos,
|
|
|
|
'enc_depth': enc_depth,
|
|
|
|
'enc_head_dim': enc_head_dim,
|
|
|
|
'dec_depth': dec_depth,
|
|
|
|
'dec_head_dim': dec_head_dim
|
|
|
|
})
|
|
|
|
super(BIT, self).__init__(
|
|
|
|
model_name='BIT',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class SNUNet(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=3,
|
|
|
|
width=32,
|
|
|
|
**params):
|
|
|
|
params.update({'in_channels': in_channels, 'width': width})
|
|
|
|
super(SNUNet, self).__init__(
|
|
|
|
model_name='SNUNet',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class DSIFN(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
use_dropout=False,
|
|
|
|
**params):
|
|
|
|
params.update({'use_dropout': use_dropout})
|
|
|
|
super(DSIFN, self).__init__(
|
|
|
|
model_name='DSIFN',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
if self.use_mixed_loss is False:
|
|
|
|
return {
|
|
|
|
# XXX: make sure the shallow copy works correctly here.
|
|
|
|
'types': [seg_losses.CrossEntropyLoss()] * 5,
|
|
|
|
'coef': [1.0] * 5
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class DSAMNet(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=3,
|
|
|
|
ca_ratio=8,
|
|
|
|
sa_kernel=7,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'in_channels': in_channels,
|
|
|
|
'ca_ratio': ca_ratio,
|
|
|
|
'sa_kernel': sa_kernel
|
|
|
|
})
|
|
|
|
super(DSAMNet, self).__init__(
|
|
|
|
model_name='DSAMNet',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
if self.use_mixed_loss is False:
|
|
|
|
return {
|
|
|
|
'types': [
|
|
|
|
seg_losses.CrossEntropyLoss(), seg_losses.DiceLoss(),
|
|
|
|
seg_losses.DiceLoss()
|
|
|
|
],
|
|
|
|
'coef': [1.0, 0.05, 0.05]
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class ChangeStar(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
mid_channels=256,
|
|
|
|
inner_channels=16,
|
|
|
|
num_convs=4,
|
|
|
|
scale_factor=4.0,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'mid_channels': mid_channels,
|
|
|
|
'inner_channels': inner_channels,
|
|
|
|
'num_convs': num_convs,
|
|
|
|
'scale_factor': scale_factor
|
|
|
|
})
|
|
|
|
super(ChangeStar, self).__init__(
|
|
|
|
model_name='ChangeStar',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
if self.use_mixed_loss is False:
|
|
|
|
return {
|
|
|
|
# XXX: make sure the shallow copy works correctly here.
|
|
|
|
'types': [seglosses.CrossEntropyLoss()] * 4,
|
|
|
|
'coef': [1.0] * 4
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class ChangeFormer(BaseChangeDetector):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
decoder_softmax=False,
|
|
|
|
embed_dim=256,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'in_channels': in_channels,
|
|
|
|
'embed_dim': embed_dim,
|
|
|
|
'decoder_softmax': decoder_softmax
|
|
|
|
})
|
|
|
|
super(ChangeFormer, self).__init__(
|
|
|
|
model_name='ChangeFormer',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
**params)
|