|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import math
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
from paddle.optimizer.lr import LRScheduler, MultiStepDecay, LambdaDecay
|
|
|
|
from .builder import LRSCHEDULERS
|
|
|
|
|
|
|
|
LRSCHEDULERS.register(MultiStepDecay)
|
|
|
|
|
|
|
|
|
|
|
|
@LRSCHEDULERS.register()
|
|
|
|
class NonLinearDecay(LRScheduler):
|
|
|
|
def __init__(self, learning_rate, lr_decay, last_epoch=-1):
|
|
|
|
self.lr_decay = lr_decay
|
|
|
|
super(NonLinearDecay, self).__init__(learning_rate, last_epoch)
|
|
|
|
|
|
|
|
def get_lr(self):
|
|
|
|
lr = self.base_lr / (1.0 + self.lr_decay * self.last_epoch)
|
|
|
|
return lr
|
|
|
|
|
|
|
|
|
|
|
|
@LRSCHEDULERS.register()
|
|
|
|
class LinearDecay(LambdaDecay):
|
|
|
|
def __init__(self, learning_rate, start_epoch, decay_epochs,
|
|
|
|
iters_per_epoch):
|
|
|
|
def lambda_rule(epoch):
|
|
|
|
epoch = epoch // iters_per_epoch
|
|
|
|
lr_l = 1.0 - max(0, epoch + 1 -
|
|
|
|
start_epoch) / float(decay_epochs + 1)
|
|
|
|
return lr_l
|
|
|
|
|
|
|
|
super().__init__(learning_rate, lambda_rule)
|
|
|
|
|
|
|
|
|
|
|
|
@LRSCHEDULERS.register()
|
|
|
|
class CosineAnnealingRestartLR(LRScheduler):
|
|
|
|
""" Cosine annealing with restarts learning rate scheme.
|
|
|
|
|
|
|
|
An example config from configs/edvr_l_blur_wo_tsa.yaml:
|
|
|
|
learning_rate: !!float 4e-4
|
|
|
|
periods: [150000, 150000, 150000, 150000]
|
|
|
|
restart_weights: [1, 1, 1, 1]
|
|
|
|
eta_min: !!float 1e-7
|
|
|
|
|
|
|
|
It has four cycles, each has 150000 iterations. At 150000th, 300000th,
|
|
|
|
450000th, the scheduler will restart with the weights in restart_weights.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
learning_rate (float): Base learning rate.
|
|
|
|
periods (list): Period for each cosine anneling cycle.
|
|
|
|
restart_weights (list): Restart weights at each restart iteration.
|
|
|
|
Default: [1].
|
|
|
|
eta_min (float): The mimimum learning rate of the cosine anneling cycle. Default: 0.
|
|
|
|
last_epoch (int): Used in paddle.nn._LRScheduler. Default: -1.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
periods,
|
|
|
|
restart_weights=[1],
|
|
|
|
eta_min=0,
|
|
|
|
last_epoch=-1):
|
|
|
|
self.periods = periods
|
|
|
|
self.restart_weights = restart_weights
|
|
|
|
self.eta_min = eta_min
|
|
|
|
assert (len(self.periods) == len(self.restart_weights)
|
|
|
|
), 'periods and restart_weights should have the same length.'
|
|
|
|
self.cumulative_period = [
|
|
|
|
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
|
|
|
|
]
|
|
|
|
super(CosineAnnealingRestartLR, self).__init__(learning_rate,
|
|
|
|
last_epoch)
|
|
|
|
|
|
|
|
def get_lr(self):
|
|
|
|
for i, period in enumerate(self.cumulative_period):
|
|
|
|
if self.last_epoch <= period:
|
|
|
|
index = i
|
|
|
|
break
|
|
|
|
|
|
|
|
current_weight = self.restart_weights[index]
|
|
|
|
nearest_restart = 0 if index == 0 else self.cumulative_period[index - 1]
|
|
|
|
current_period = self.periods[index]
|
|
|
|
|
|
|
|
lr = self.eta_min + current_weight * 0.5 * (
|
|
|
|
self.base_lr - self.eta_min) * (1 + math.cos(math.pi * (
|
|
|
|
(self.last_epoch - nearest_restart) / current_period)))
|
|
|
|
return lr
|