|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
from .builder import DATASETS
|
|
|
|
from .base_dataset import BaseDataset
|
|
|
|
from .preprocess.builder import build_transforms
|
|
|
|
|
|
|
|
|
|
|
|
@DATASETS.register()
|
|
|
|
class CommonVisionDataset(paddle.io.Dataset):
|
|
|
|
"""
|
|
|
|
Dataset for using paddle vision default datasets, such as mnist, flowers.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
dataset_name,
|
|
|
|
transforms=None,
|
|
|
|
return_label=True,
|
|
|
|
params=None):
|
|
|
|
"""Initialize this dataset class.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset_name (str): return a dataset from paddle.vision.datasets by this option.
|
|
|
|
transforms (list[dict]): A sequence of data transforms config.
|
|
|
|
return_label (bool): whether to retuan a label of a sample.
|
|
|
|
params (dict): paramters of paddle.vision.datasets.
|
|
|
|
"""
|
|
|
|
super(CommonVisionDataset, self).__init__()
|
|
|
|
|
|
|
|
dataset_cls = getattr(paddle.vision.datasets, dataset_name)
|
|
|
|
transform = build_transforms(transforms)
|
|
|
|
self.return_label = return_label
|
|
|
|
|
|
|
|
param_dict = {}
|
|
|
|
param_names = list(dataset_cls.__init__.__code__.co_varnames)
|
|
|
|
if 'transform' in param_names:
|
|
|
|
param_dict['transform'] = transform
|
|
|
|
|
|
|
|
if params is not None:
|
|
|
|
for name in param_names:
|
|
|
|
if name in params:
|
|
|
|
param_dict[name] = params[name]
|
|
|
|
|
|
|
|
self.dataset = dataset_cls(**param_dict)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
return_dict = {}
|
|
|
|
return_list = self.dataset[index]
|
|
|
|
if isinstance(return_list, (tuple, list)):
|
|
|
|
if len(return_list) == 2:
|
|
|
|
return_dict['img'] = return_list[0]
|
|
|
|
if self.return_label:
|
|
|
|
return_dict['class_id'] = np.asarray(return_list[1])
|
|
|
|
else:
|
|
|
|
return_dict['img'] = return_list[0]
|
|
|
|
else:
|
|
|
|
return_dict['img'] = return_list
|
|
|
|
|
|
|
|
return return_dict
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.dataset)
|