You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

443 lines
18 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import copy
import os
import os.path as osp
import random
import re
from collections import OrderedDict
import xml.etree.ElementTree as ET
3 years ago
import numpy as np
from .base import BaseDataset
from paddlers.utils import logging, get_encoding, norm_path, is_pic
from paddlers.transforms import DecodeImg, MixupImage
from paddlers.tools import YOLOAnchorCluster
class VOCDetDataset(BaseDataset):
"""
Dataset with PASCAL VOC annotations for detection tasks.
Args:
data_dir (str): Root directory of the dataset.
file_list (str): Path of the file that contains relative paths of images and annotation files.
transforms (paddlers.transforms.Compose): Data preprocessing and data augmentation operators to apply.
label_list (str|None, optional): Path of the file that contains the category names. Defaults to None.
num_workers (int|str, optional): Number of processes used for data loading. If `num_workers` is 'auto',
the number of workers will be automatically determined according to the number of CPU cores: If
there are more than 16 cores8 workers will be used. Otherwise, the number of workers will be half
the number of CPU cores. Defaults: 'auto'.
shuffle (bool, optional): Whether to shuffle the samples. Defaults to False.
allow_empty (bool, optional): Whether to add negative samples. Defaults to False.
empty_ratio (float, optional): Ratio of negative samples. If `empty_ratio` is smaller than 0 or not less
than 1, keep all generated negative samples. Defaults to 1.0.
"""
def __init__(self,
data_dir,
file_list,
transforms,
label_list,
num_workers='auto',
shuffle=False,
allow_empty=False,
empty_ratio=1.):
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
# or matplotlib.backends is imported for the first time.
import matplotlib
matplotlib.use('Agg')
from pycocotools.coco import COCO
super(VOCDetDataset, self).__init__(data_dir, label_list, transforms,
num_workers, shuffle)
self.data_fields = None
self.num_max_boxes = 50
self.use_mix = False
if self.transforms is not None:
for op in self.transforms.transforms:
if isinstance(op, MixupImage):
self.mixup_op = copy.deepcopy(op)
self.use_mix = True
self.num_max_boxes *= 2
break
self.batch_transforms = None
self.allow_empty = allow_empty
self.empty_ratio = empty_ratio
self.file_list = list()
neg_file_list = list()
self.labels = list()
annotations = dict()
annotations['images'] = list()
annotations['categories'] = list()
annotations['annotations'] = list()
cname2cid = OrderedDict()
label_id = 0
with open(label_list, 'r', encoding=get_encoding(label_list)) as f:
for line in f.readlines():
cname2cid[line.strip()] = label_id
label_id += 1
self.labels.append(line.strip())
logging.info("Starting to read file list from dataset...")
for k, v in cname2cid.items():
annotations['categories'].append({
'supercategory': 'component',
'id': v + 1,
'name': k
})
ct = 0
ann_ct = 0
with open(file_list, 'r', encoding=get_encoding(file_list)) as f:
while True:
line = f.readline()
if not line:
break
if len(line.strip().split()) > 2:
raise ValueError("A space is defined as the separator, "
"but it exists in image or label name {}."
.format(line))
img_file, xml_file = [
osp.join(data_dir, x) for x in line.strip().split()[:2]
]
img_file = norm_path(img_file)
xml_file = norm_path(xml_file)
if not is_pic(img_file):
continue
if not osp.isfile(xml_file):
continue
if not osp.exists(img_file):
logging.warning('The image file {} does not exist!'.format(
img_file))
continue
if not osp.exists(xml_file):
logging.warning('The annotation file {} does not exist!'.
format(xml_file))
continue
tree = ET.parse(xml_file)
if tree.find('id') is None:
im_id = np.asarray([ct])
else:
ct = int(tree.find('id').text)
im_id = np.asarray([int(tree.find('id').text)])
pattern = re.compile('<size>', re.IGNORECASE)
size_tag = pattern.findall(str(ET.tostringlist(tree.getroot())))
if len(size_tag) > 0:
size_tag = size_tag[0][1:-1]
size_element = tree.find(size_tag)
pattern = re.compile('<width>', re.IGNORECASE)
width_tag = pattern.findall(
str(ET.tostringlist(size_element)))[0][1:-1]
im_w = float(size_element.find(width_tag).text)
pattern = re.compile('<height>', re.IGNORECASE)
height_tag = pattern.findall(
str(ET.tostringlist(size_element)))[0][1:-1]
im_h = float(size_element.find(height_tag).text)
else:
im_w = 0
im_h = 0
pattern = re.compile('<object>', re.IGNORECASE)
obj_match = pattern.findall(
str(ET.tostringlist(tree.getroot())))
if len(obj_match) > 0:
obj_tag = obj_match[0][1:-1]
objs = tree.findall(obj_tag)
else:
objs = list()
num_bbox, i = len(objs), 0
gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
gt_score = np.zeros((num_bbox, 1), dtype=np.float32)
is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
difficult = np.zeros((num_bbox, 1), dtype=np.int32)
for obj in objs:
pattern = re.compile('<name>', re.IGNORECASE)
name_tag = pattern.findall(str(ET.tostringlist(obj)))[0][1:
-1]
cname = obj.find(name_tag).text.strip()
pattern = re.compile('<difficult>', re.IGNORECASE)
diff_tag = pattern.findall(str(ET.tostringlist(obj)))
if len(diff_tag) == 0:
_difficult = 0
else:
diff_tag = diff_tag[0][1:-1]
try:
_difficult = int(obj.find(diff_tag).text)
except Exception:
_difficult = 0
pattern = re.compile('<bndbox>', re.IGNORECASE)
box_tag = pattern.findall(str(ET.tostringlist(obj)))
if len(box_tag) == 0:
logging.warning(
2 years ago
"There is no field '<bndbox>' in the object, "
"so this object will be ignored. xml file: {}".
format(xml_file))
continue
box_tag = box_tag[0][1:-1]
box_element = obj.find(box_tag)
pattern = re.compile('<xmin>', re.IGNORECASE)
xmin_tag = pattern.findall(
str(ET.tostringlist(box_element)))[0][1:-1]
x1 = float(box_element.find(xmin_tag).text)
pattern = re.compile('<ymin>', re.IGNORECASE)
ymin_tag = pattern.findall(
str(ET.tostringlist(box_element)))[0][1:-1]
y1 = float(box_element.find(ymin_tag).text)
pattern = re.compile('<xmax>', re.IGNORECASE)
xmax_tag = pattern.findall(
str(ET.tostringlist(box_element)))[0][1:-1]
x2 = float(box_element.find(xmax_tag).text)
pattern = re.compile('<ymax>', re.IGNORECASE)
ymax_tag = pattern.findall(
str(ET.tostringlist(box_element)))[0][1:-1]
y2 = float(box_element.find(ymax_tag).text)
x1 = max(0, x1)
y1 = max(0, y1)
if im_w > 0.5 and im_h > 0.5:
x2 = min(im_w - 1, x2)
y2 = min(im_h - 1, y2)
if not (x2 >= x1 and y2 >= y1):
logging.warning(
"Bounding box for object {} does not satisfy xmin {} <= xmax {} and ymin {} <= ymax {}, "
"so this object is skipped. xml file: {}".format(
i, x1, x2, y1, y2, xml_file))
continue
gt_bbox[i, :] = [x1, y1, x2, y2]
gt_class[i, 0] = cname2cid[cname]
gt_score[i, 0] = 1.
is_crowd[i, 0] = 0
difficult[i, 0] = _difficult
i += 1
annotations['annotations'].append({
'iscrowd': 0,
'image_id': int(im_id[0]),
'bbox': [x1, y1, x2 - x1, y2 - y1],
'area': float((x2 - x1) * (y2 - y1)),
'category_id': cname2cid[cname] + 1,
'id': ann_ct,
'difficult': _difficult
})
ann_ct += 1
gt_bbox = gt_bbox[:i, :]
gt_class = gt_class[:i, :]
gt_score = gt_score[:i, :]
is_crowd = is_crowd[:i, :]
difficult = difficult[:i, :]
im_info = {
'im_id': im_id,
'image_shape': np.array(
[im_h, im_w], dtype=np.int32)
}
label_info = {
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_score': gt_score,
'difficult': difficult
}
if gt_bbox.size > 0:
self.file_list.append({
'image': img_file,
**
im_info,
**
label_info
})
annotations['images'].append({
'height': im_h,
'width': im_w,
'id': int(im_id[0]),
'file_name': osp.split(img_file)[1]
})
else:
neg_file_list.append({
'image': img_file,
**
im_info,
**
label_info
})
ct += 1
if self.use_mix:
self.num_max_boxes = max(self.num_max_boxes, 2 * len(objs))
else:
self.num_max_boxes = max(self.num_max_boxes, len(objs))
if not ct:
logging.error("No voc record found in %s' % (file_list)", exit=True)
self.pos_num = len(self.file_list)
if self.allow_empty and neg_file_list:
self.file_list += self._sample_empty(neg_file_list)
logging.info(
"{} samples in file {}, including {} positive samples and {} negative samples.".
format(
len(self.file_list), file_list, self.pos_num,
len(self.file_list) - self.pos_num))
self.num_samples = len(self.file_list)
self.coco_gt = COCO()
self.coco_gt.dataset = annotations
self.coco_gt.createIndex()
self._epoch = 0
def __getitem__(self, idx):
sample = copy.deepcopy(self.file_list[idx])
if self.data_fields is not None:
sample = {k: sample[k] for k in self.data_fields}
if self.use_mix and (self.mixup_op.mixup_epoch == -1 or
self._epoch < self.mixup_op.mixup_epoch):
if self.num_samples > 1:
mix_idx = random.randint(1, self.num_samples - 1)
mix_pos = (mix_idx + idx) % self.num_samples
else:
mix_pos = 0
sample_mix = copy.deepcopy(self.file_list[mix_pos])
if self.data_fields is not None:
sample_mix = {k: sample_mix[k] for k in self.data_fields}
sample = self.mixup_op(sample=[
DecodeImg(to_rgb=False)(sample),
DecodeImg(to_rgb=False)(sample_mix)
])
sample = self.transforms(sample)
return sample
def __len__(self):
return self.num_samples
def set_epoch(self, epoch_id):
self._epoch = epoch_id
def cluster_yolo_anchor(self,
num_anchors,
image_size,
cache=True,
cache_path=None,
iters=300,
gen_iters=1000,
thresh=.25):
"""
Cluster YOLO anchors.
Reference:
https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py
Args:
num_anchors (int): Number of clusters.
image_size (list[int]|int): [h, w] or an int value that corresponds to the shape [image_size, image_size].
cache (bool, optional): Whether to use cache. Defaults to True.
cache_path (str|None, optional): Path of cache directory. If None, use `dataset.data_dir`.
Defaults to None.
iters (int, optional): Iterations of k-means algorithm. Defaults to 300.
gen_iters (int, optional): Iterations of genetic algorithm. Defaults to 1000.
thresh (float, optional): Anchor scale threshold. Defaults to 0.25.
"""
if cache_path is None:
cache_path = self.data_dir
cluster = YOLOAnchorCluster(
num_anchors=num_anchors,
dataset=self,
image_size=image_size,
cache=cache,
cache_path=cache_path,
iters=iters,
gen_iters=gen_iters,
thresh=thresh)
anchors = cluster()
return anchors
def add_negative_samples(self, image_dir, empty_ratio=1):
"""
Generate and add negative samples.
Args:
image_dir (str): Directory that contains images.
empty_ratio (float|None, optional): Ratio of negative samples. If `empty_ratio` is smaller than
0 or not less than 1, keep all generated negative samples. Defaults to 1.0.
"""
import cv2
if not osp.isdir(image_dir):
raise ValueError("{} is not a valid image directory.".format(
image_dir))
if empty_ratio is not None:
self.empty_ratio = empty_ratio
image_list = os.listdir(image_dir)
max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds()))
neg_file_list = list()
for image in image_list:
if not is_pic(image):
continue
gt_bbox = np.zeros((0, 4), dtype=np.float32)
gt_class = np.zeros((0, 1), dtype=np.int32)
gt_score = np.zeros((0, 1), dtype=np.float32)
is_crowd = np.zeros((0, 1), dtype=np.int32)
difficult = np.zeros((0, 1), dtype=np.int32)
max_img_id += 1
im_fname = osp.join(image_dir, image)
img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED)
im_h, im_w, im_c = img_data.shape
im_info = {
'im_id': np.asarray([max_img_id]),
'image_shape': np.array(
[im_h, im_w], dtype=np.int32)
}
label_info = {
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_score': gt_score,
'difficult': difficult
}
if 'gt_poly' in self.file_list[0]:
label_info['gt_poly'] = []
neg_file_list.append({'image': im_fname, ** im_info, ** label_info})
if neg_file_list:
self.allow_empty = True
self.file_list += self._sample_empty(neg_file_list)
logging.info(
"{} negative samples added. Dataset contains {} positive samples and {} negative samples.".
format(
len(self.file_list) - self.num_samples, self.pos_num,
len(self.file_list) - self.pos_num))
self.num_samples = len(self.file_list)
def _sample_empty(self, neg_file_list):
if 0. <= self.empty_ratio < 1.:
import random
total_num = len(self.file_list)
neg_num = total_num - self.pos_num
sample_num = min((total_num * self.empty_ratio - neg_num) //
(1 - self.empty_ratio), len(neg_file_list))
return random.sample(neg_file_list, sample_num)
else:
return neg_file_list