|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.nn.initializer import Normal
|
|
|
|
|
|
|
|
from .backbones import resnet
|
|
|
|
from .layers import Conv3x3, Conv1x1, get_norm_layer, Identity
|
|
|
|
from .param_init import KaimingInitMixin
|
|
|
|
|
|
|
|
|
|
|
|
def calc_product(*args):
|
|
|
|
if len(args) < 1:
|
|
|
|
raise ValueError
|
|
|
|
ret = args[0]
|
|
|
|
for arg in args[1:]:
|
|
|
|
ret *= arg
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
class BIT(nn.Layer):
|
|
|
|
"""
|
|
|
|
The BIT implementation based on PaddlePaddle.
|
|
|
|
|
|
|
|
The original article refers to
|
|
|
|
H. Chen, et al., "Remote Sensing Image Change Detection With Transformers"
|
|
|
|
(https://arxiv.org/abs/2103.00208).
|
|
|
|
|
|
|
|
This implementation adopts pretrained encoders, as opposed to the original work where weights are randomly initialized.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_channels (int): The number of bands of the input images.
|
|
|
|
num_classes (int): The number of target classes.
|
|
|
|
backbone (str, optional): The ResNet architecture that is used as the backbone. Currently, only 'resnet18' and
|
|
|
|
'resnet34' are supported. Default: 'resnet18'.
|
|
|
|
n_stages (int, optional): The number of ResNet stages used in the backbone, which should be a value in {3,4,5}.
|
|
|
|
Default: 4.
|
|
|
|
use_tokenizer (bool, optional): Use a tokenizer or not. Default: True.
|
|
|
|
token_len (int, optional): The length of input tokens. Default: 4.
|
|
|
|
pool_mode (str, optional): The pooling strategy to obtain input tokens when `use_tokenizer` is set to False. 'max'
|
|
|
|
for global max pooling and 'avg' for global average pooling. Default: 'max'.
|
|
|
|
pool_size (int, optional): The height and width of the pooled feature maps when `use_tokenizer` is set to False.
|
|
|
|
Default: 2.
|
|
|
|
enc_with_pos (bool, optional): Whether to add leanred positional embedding to the input feature sequence of the
|
|
|
|
encoder. Default: True.
|
|
|
|
enc_depth (int, optional): The number of attention blocks used in the encoder. Default: 1
|
|
|
|
enc_head_dim (int, optional): The embedding dimension of each encoder head. Default: 64.
|
|
|
|
dec_depth (int, optional): The number of attention blocks used in the decoder. Default: 8.
|
|
|
|
dec_head_dim (int, optional): The embedding dimension of each decoder head. Default: 8.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: When an unsupported backbone type is specified, or the number of backbone stages is not 3, 4, or 5.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
in_channels,
|
|
|
|
num_classes,
|
|
|
|
backbone='resnet18',
|
|
|
|
n_stages=4,
|
|
|
|
use_tokenizer=True,
|
|
|
|
token_len=4,
|
|
|
|
pool_mode='max',
|
|
|
|
pool_size=2,
|
|
|
|
enc_with_pos=True,
|
|
|
|
enc_depth=1,
|
|
|
|
enc_head_dim=64,
|
|
|
|
dec_depth=8,
|
|
|
|
dec_head_dim=8,
|
|
|
|
**backbone_kwargs):
|
|
|
|
super(BIT, self).__init__()
|
|
|
|
|
|
|
|
# TODO: reduce hard-coded parameters
|
|
|
|
DIM = 32
|
|
|
|
MLP_DIM = 2 * DIM
|
|
|
|
EBD_DIM = DIM
|
|
|
|
|
|
|
|
self.backbone = Backbone(
|
|
|
|
in_channels,
|
|
|
|
EBD_DIM,
|
|
|
|
arch=backbone,
|
|
|
|
n_stages=n_stages,
|
|
|
|
**backbone_kwargs)
|
|
|
|
|
|
|
|
self.use_tokenizer = use_tokenizer
|
|
|
|
if not use_tokenizer:
|
|
|
|
# If a tokenzier is not to be used,then downsample the feature maps.
|
|
|
|
self.pool_size = pool_size
|
|
|
|
self.pool_mode = pool_mode
|
|
|
|
self.token_len = pool_size * pool_size
|
|
|
|
else:
|
|
|
|
self.conv_att = Conv1x1(32, token_len, bias=False)
|
|
|
|
self.token_len = token_len
|
|
|
|
|
|
|
|
self.enc_with_pos = enc_with_pos
|
|
|
|
if enc_with_pos:
|
|
|
|
self.enc_pos_embedding = self.create_parameter(
|
|
|
|
shape=(1, self.token_len * 2, EBD_DIM),
|
|
|
|
default_initializer=Normal())
|
|
|
|
|
|
|
|
self.enc_depth = enc_depth
|
|
|
|
self.dec_depth = dec_depth
|
|
|
|
self.enc_head_dim = enc_head_dim
|
|
|
|
self.dec_head_dim = dec_head_dim
|
|
|
|
|
|
|
|
self.encoder = TransformerEncoder(
|
|
|
|
dim=DIM,
|
|
|
|
depth=enc_depth,
|
|
|
|
n_heads=8,
|
|
|
|
head_dim=enc_head_dim,
|
|
|
|
mlp_dim=MLP_DIM,
|
|
|
|
dropout_rate=0.)
|
|
|
|
self.decoder = TransformerDecoder(
|
|
|
|
dim=DIM,
|
|
|
|
depth=dec_depth,
|
|
|
|
n_heads=8,
|
|
|
|
head_dim=dec_head_dim,
|
|
|
|
mlp_dim=MLP_DIM,
|
|
|
|
dropout_rate=0.,
|
|
|
|
apply_softmax=True)
|
|
|
|
|
|
|
|
self.upsample = nn.Upsample(scale_factor=4, mode='bilinear')
|
|
|
|
self.conv_out = nn.Sequential(
|
|
|
|
Conv3x3(
|
|
|
|
EBD_DIM, EBD_DIM, norm=True, act=True),
|
|
|
|
Conv3x3(EBD_DIM, num_classes))
|
|
|
|
|
|
|
|
def _get_semantic_tokens(self, x):
|
|
|
|
b, c = x.shape[:2]
|
|
|
|
att_map = self.conv_att(x)
|
|
|
|
att_map = att_map.reshape(
|
|
|
|
(b, self.token_len, 1, calc_product(*att_map.shape[2:])))
|
|
|
|
att_map = F.softmax(att_map, axis=-1)
|
|
|
|
x = x.reshape((b, 1, c, att_map.shape[-1]))
|
|
|
|
tokens = (x * att_map).sum(-1)
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
def _get_reshaped_tokens(self, x):
|
|
|
|
if self.pool_mode == 'max':
|
|
|
|
x = F.adaptive_max_pool2d(x, (self.pool_size, self.pool_size))
|
|
|
|
elif self.pool_mode == 'avg':
|
|
|
|
x = F.adaptive_avg_pool2d(x, (self.pool_size, self.pool_size))
|
|
|
|
else:
|
|
|
|
x = x
|
|
|
|
tokens = x.transpose((0, 2, 3, 1)).flatten(1, 2)
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
def encode(self, x):
|
|
|
|
if self.enc_with_pos:
|
|
|
|
x += self.enc_pos_embedding
|
|
|
|
x = self.encoder(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def decode(self, x, m):
|
|
|
|
b, c, h, w = x.shape
|
|
|
|
x = x.transpose((0, 2, 3, 1)).flatten(1, 2)
|
|
|
|
x = self.decoder(x, m)
|
|
|
|
x = x.transpose((0, 2, 1)).reshape((b, c, h, w))
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, t1, t2):
|
|
|
|
# Extract features via shared backbone.
|
|
|
|
x1 = self.backbone(t1)
|
|
|
|
x2 = self.backbone(t2)
|
|
|
|
|
|
|
|
# Tokenization
|
|
|
|
if self.use_tokenizer:
|
|
|
|
token1 = self._get_semantic_tokens(x1)
|
|
|
|
token2 = self._get_semantic_tokens(x2)
|
|
|
|
else:
|
|
|
|
token1 = self._get_reshaped_tokens(x1)
|
|
|
|
token2 = self._get_reshaped_tokens(x2)
|
|
|
|
|
|
|
|
# Transformer encoder forward
|
|
|
|
token = paddle.concat([token1, token2], axis=1)
|
|
|
|
token = self.encode(token)
|
|
|
|
token1, token2 = paddle.chunk(token, 2, axis=1)
|
|
|
|
|
|
|
|
# Transformer decoder forward
|
|
|
|
y1 = self.decode(x1, token1)
|
|
|
|
y2 = self.decode(x2, token2)
|
|
|
|
|
|
|
|
# Feature differencing
|
|
|
|
y = paddle.abs(y1 - y2)
|
|
|
|
y = self.upsample(y)
|
|
|
|
|
|
|
|
# Classifier forward
|
|
|
|
pred = self.conv_out(y)
|
|
|
|
return [pred]
|
|
|
|
|
|
|
|
def init_weight(self):
|
|
|
|
# Use the default initialization method.
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class Residual(nn.Layer):
|
|
|
|
def __init__(self, fn):
|
|
|
|
super(Residual, self).__init__()
|
|
|
|
self.fn = fn
|
|
|
|
|
|
|
|
def forward(self, x, **kwargs):
|
|
|
|
return self.fn(x, **kwargs) + x
|
|
|
|
|
|
|
|
|
|
|
|
class Residual2(nn.Layer):
|
|
|
|
def __init__(self, fn):
|
|
|
|
super(Residual2, self).__init__()
|
|
|
|
self.fn = fn
|
|
|
|
|
|
|
|
def forward(self, x1, x2, **kwargs):
|
|
|
|
return self.fn(x1, x2, **kwargs) + x1
|
|
|
|
|
|
|
|
|
|
|
|
class PreNorm(nn.Layer):
|
|
|
|
def __init__(self, dim, fn):
|
|
|
|
super(PreNorm, self).__init__()
|
|
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
|
self.fn = fn
|
|
|
|
|
|
|
|
def forward(self, x, **kwargs):
|
|
|
|
return self.fn(self.norm(x), **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class PreNorm2(nn.Layer):
|
|
|
|
def __init__(self, dim, fn):
|
|
|
|
super(PreNorm2, self).__init__()
|
|
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
|
self.fn = fn
|
|
|
|
|
|
|
|
def forward(self, x1, x2, **kwargs):
|
|
|
|
return self.fn(self.norm(x1), self.norm(x2), **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Sequential):
|
|
|
|
def __init__(self, dim, hidden_dim, dropout_rate=0.):
|
|
|
|
super(FeedForward, self).__init__(
|
|
|
|
nn.Linear(dim, hidden_dim),
|
|
|
|
nn.GELU(),
|
|
|
|
nn.Dropout(dropout_rate),
|
|
|
|
nn.Linear(hidden_dim, dim), nn.Dropout(dropout_rate))
|
|
|
|
|
|
|
|
|
|
|
|
class CrossAttention(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
dim,
|
|
|
|
n_heads=8,
|
|
|
|
head_dim=64,
|
|
|
|
dropout_rate=0.,
|
|
|
|
apply_softmax=True):
|
|
|
|
super(CrossAttention, self).__init__()
|
|
|
|
|
|
|
|
inner_dim = head_dim * n_heads
|
|
|
|
self.n_heads = n_heads
|
|
|
|
self.head_dim = head_dim
|
|
|
|
self.scale = dim**-0.5
|
|
|
|
|
|
|
|
self.apply_softmax = apply_softmax
|
|
|
|
|
|
|
|
self.fc_q = nn.Linear(dim, inner_dim, bias_attr=False)
|
|
|
|
self.fc_k = nn.Linear(dim, inner_dim, bias_attr=False)
|
|
|
|
self.fc_v = nn.Linear(dim, inner_dim, bias_attr=False)
|
|
|
|
|
|
|
|
self.fc_out = nn.Sequential(
|
|
|
|
nn.Linear(inner_dim, dim), nn.Dropout(dropout_rate))
|
|
|
|
|
|
|
|
def forward(self, x, ref):
|
|
|
|
b, n = x.shape[:2]
|
|
|
|
h = self.n_heads
|
|
|
|
|
|
|
|
q = self.fc_q(x)
|
|
|
|
k = self.fc_k(ref)
|
|
|
|
v = self.fc_v(ref)
|
|
|
|
|
|
|
|
q = q.reshape((b, n, h, self.head_dim)).transpose((0, 2, 1, 3))
|
|
|
|
rn = ref.shape[1]
|
|
|
|
k = k.reshape((b, rn, h, self.head_dim)).transpose((0, 2, 1, 3))
|
|
|
|
v = v.reshape((b, rn, h, self.head_dim)).transpose((0, 2, 1, 3))
|
|
|
|
|
|
|
|
mult = paddle.matmul(q, k, transpose_y=True) * self.scale
|
|
|
|
|
|
|
|
if self.apply_softmax:
|
|
|
|
mult = F.softmax(mult, axis=-1)
|
|
|
|
|
|
|
|
out = paddle.matmul(mult, v)
|
|
|
|
out = out.transpose((0, 2, 1, 3)).flatten(2)
|
|
|
|
return self.fc_out(out)
|
|
|
|
|
|
|
|
|
|
|
|
class SelfAttention(CrossAttention):
|
|
|
|
def forward(self, x):
|
|
|
|
return super(SelfAttention, self).forward(x, x)
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerEncoder(nn.Layer):
|
|
|
|
def __init__(self, dim, depth, n_heads, head_dim, mlp_dim, dropout_rate):
|
|
|
|
super(TransformerEncoder, self).__init__()
|
|
|
|
self.layers = nn.LayerList([])
|
|
|
|
for _ in range(depth):
|
|
|
|
self.layers.append(
|
|
|
|
nn.LayerList([
|
|
|
|
Residual(
|
|
|
|
PreNorm(dim,
|
|
|
|
SelfAttention(dim, n_heads, head_dim,
|
|
|
|
dropout_rate))),
|
|
|
|
Residual(
|
|
|
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate)))
|
|
|
|
]))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
for att, ff in self.layers:
|
|
|
|
x = att(x)
|
|
|
|
x = ff(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerDecoder(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
dim,
|
|
|
|
depth,
|
|
|
|
n_heads,
|
|
|
|
head_dim,
|
|
|
|
mlp_dim,
|
|
|
|
dropout_rate,
|
|
|
|
apply_softmax=True):
|
|
|
|
super(TransformerDecoder, self).__init__()
|
|
|
|
self.layers = nn.LayerList([])
|
|
|
|
for _ in range(depth):
|
|
|
|
self.layers.append(
|
|
|
|
nn.LayerList([
|
|
|
|
Residual2(
|
|
|
|
PreNorm2(dim,
|
|
|
|
CrossAttention(dim, n_heads, head_dim,
|
|
|
|
dropout_rate, apply_softmax))),
|
|
|
|
Residual(
|
|
|
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate)))
|
|
|
|
]))
|
|
|
|
|
|
|
|
def forward(self, x, m):
|
|
|
|
for att, ff in self.layers:
|
|
|
|
x = att(x, m)
|
|
|
|
x = ff(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Backbone(nn.Layer, KaimingInitMixin):
|
|
|
|
def __init__(self,
|
|
|
|
in_ch,
|
|
|
|
out_ch=32,
|
|
|
|
arch='resnet18',
|
|
|
|
pretrained=True,
|
|
|
|
n_stages=5):
|
|
|
|
super(Backbone, self).__init__()
|
|
|
|
|
|
|
|
expand = 1
|
|
|
|
strides = (2, 1, 2, 1, 1)
|
|
|
|
if arch == 'resnet18':
|
|
|
|
self.resnet = resnet.resnet18(
|
|
|
|
pretrained=pretrained,
|
|
|
|
strides=strides,
|
|
|
|
norm_layer=get_norm_layer())
|
|
|
|
elif arch == 'resnet34':
|
|
|
|
self.resnet = resnet.resnet34(
|
|
|
|
pretrained=pretrained,
|
|
|
|
strides=strides,
|
|
|
|
norm_layer=get_norm_layer())
|
|
|
|
else:
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
self.n_stages = n_stages
|
|
|
|
|
|
|
|
if self.n_stages == 5:
|
|
|
|
itm_ch = 512 * expand
|
|
|
|
elif self.n_stages == 4:
|
|
|
|
itm_ch = 256 * expand
|
|
|
|
elif self.n_stages == 3:
|
|
|
|
itm_ch = 128 * expand
|
|
|
|
else:
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
self.upsample = nn.Upsample(scale_factor=2)
|
|
|
|
self.conv_out = Conv3x3(itm_ch, out_ch)
|
|
|
|
|
|
|
|
self._trim_resnet()
|
|
|
|
|
|
|
|
if in_ch != 3:
|
|
|
|
self.resnet.conv1 = nn.Conv2D(
|
|
|
|
in_ch, 64, kernel_size=7, stride=2, padding=3, bias_attr=False)
|
|
|
|
|
|
|
|
if not pretrained:
|
|
|
|
self.init_weight()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
y = self.resnet.conv1(x)
|
|
|
|
y = self.resnet.bn1(y)
|
|
|
|
y = self.resnet.relu(y)
|
|
|
|
y = self.resnet.maxpool(y)
|
|
|
|
|
|
|
|
y = self.resnet.layer1(y)
|
|
|
|
y = self.resnet.layer2(y)
|
|
|
|
y = self.resnet.layer3(y)
|
|
|
|
y = self.resnet.layer4(y)
|
|
|
|
|
|
|
|
y = self.upsample(y)
|
|
|
|
|
|
|
|
return self.conv_out(y)
|
|
|
|
|
|
|
|
def _trim_resnet(self):
|
|
|
|
if self.n_stages > 5:
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
if self.n_stages < 5:
|
|
|
|
self.resnet.layer4 = Identity()
|
|
|
|
|
|
|
|
if self.n_stages <= 3:
|
|
|
|
self.resnet.layer3 = Identity()
|
|
|
|
|
|
|
|
self.resnet.avgpool = Identity()
|
|
|
|
self.resnet.fc = Identity()
|