|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os.path as osp
|
|
|
|
import copy
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic
|
|
|
|
|
|
|
|
|
|
|
|
class SegDataset(BaseDataset):
|
|
|
|
"""读取语义分割任务数据集,并对样本进行相应的处理。
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_dir (str): 数据集所在的目录路径。
|
|
|
|
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
|
|
|
|
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。
|
|
|
|
transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。
|
|
|
|
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
|
|
|
|
系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
|
|
|
|
一半。
|
|
|
|
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
data_dir,
|
|
|
|
file_list,
|
|
|
|
label_list=None,
|
|
|
|
transforms=None,
|
|
|
|
num_workers='auto',
|
|
|
|
shuffle=False):
|
|
|
|
super(SegDataset, self).__init__(data_dir, label_list, transforms,
|
|
|
|
num_workers, shuffle)
|
|
|
|
# TODO batch padding
|
|
|
|
self.batch_transforms = None
|
|
|
|
self.file_list = list()
|
|
|
|
self.labels = list()
|
|
|
|
|
|
|
|
# TODO:非None时,让用户跳转数据集分析生成label_list
|
|
|
|
# 不要在此处分析label file
|
|
|
|
if label_list is not None:
|
|
|
|
with open(label_list, encoding=get_encoding(label_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
item = line.strip()
|
|
|
|
self.labels.append(item)
|
|
|
|
with open(file_list, encoding=get_encoding(file_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
items = line.strip().split()
|
|
|
|
if len(items) > 2:
|
|
|
|
raise Exception(
|
|
|
|
"A space is defined as the delimiter to separate the image and label path, " \
|
|
|
|
"so the space cannot be in the image or label path, but the line[{}] of " \
|
|
|
|
" file_list[{}] has a space in the image or label path.".format(line, file_list))
|
|
|
|
items[0] = norm_path(items[0])
|
|
|
|
items[1] = norm_path(items[1])
|
|
|
|
full_path_im = osp.join(data_dir, items[0])
|
|
|
|
full_path_label = osp.join(data_dir, items[1])
|
|
|
|
if not is_pic(full_path_im) or not is_pic(full_path_label):
|
|
|
|
continue
|
|
|
|
if not osp.exists(full_path_im):
|
|
|
|
raise IOError('Image file {} does not exist!'.format(
|
|
|
|
full_path_im))
|
|
|
|
if not osp.exists(full_path_label):
|
|
|
|
raise IOError('Label file {} does not exist!'.format(
|
|
|
|
full_path_label))
|
|
|
|
self.file_list.append({
|
|
|
|
'image': full_path_im,
|
|
|
|
'mask': full_path_label
|
|
|
|
})
|
|
|
|
self.num_samples = len(self.file_list)
|
|
|
|
logging.info("{} samples in file {}".format(
|
|
|
|
len(self.file_list), file_list))
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.file_list)
|