|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import copy
|
|
|
|
import operator
|
|
|
|
import shapely.ops
|
|
|
|
from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
|
|
|
|
from functools import reduce
|
|
|
|
from sklearn.decomposition import PCA
|
|
|
|
from sklearn.linear_model import LinearRegression
|
|
|
|
from skimage import exposure
|
|
|
|
|
|
|
|
|
|
|
|
def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]):
|
|
|
|
# Rescaling (min-max normalization)
|
|
|
|
range_value = np.asarray(
|
|
|
|
[1. / (max_value[i] - min_value[i]) for i in range(len(max_value))],
|
|
|
|
dtype=np.float32)
|
|
|
|
im = (im - np.asarray(min_value, dtype=np.float32)) * range_value
|
|
|
|
|
|
|
|
# Standardization (Z-score Normalization)
|
|
|
|
im -= mean
|
|
|
|
im /= std
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def permute(im, to_bgr=False):
|
|
|
|
im = np.swapaxes(im, 1, 2)
|
|
|
|
im = np.swapaxes(im, 1, 0)
|
|
|
|
if to_bgr:
|
|
|
|
im = im[[2, 1, 0], :, :]
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def center_crop(im, crop_size=224):
|
|
|
|
height, width = im.shape[:2]
|
|
|
|
w_start = (width - crop_size) // 2
|
|
|
|
h_start = (height - crop_size) // 2
|
|
|
|
w_end = w_start + crop_size
|
|
|
|
h_end = h_start + crop_size
|
|
|
|
im = im[h_start:h_end, w_start:w_end, ...]
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def horizontal_flip(im):
|
|
|
|
im = im[:, ::-1, ...]
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def vertical_flip(im):
|
|
|
|
im = im[::-1, :, ...]
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def rgb2bgr(im):
|
|
|
|
return im[:, :, ::-1]
|
|
|
|
|
|
|
|
|
|
|
|
def is_poly(poly):
|
|
|
|
assert isinstance(poly, (list, dict)), \
|
|
|
|
"Invalid poly type: {}".format(type(poly))
|
|
|
|
return isinstance(poly, list)
|
|
|
|
|
|
|
|
|
|
|
|
def horizontal_flip_poly(poly, width):
|
|
|
|
flipped_poly = np.array(poly)
|
|
|
|
flipped_poly[0::2] = width - np.array(poly[0::2])
|
|
|
|
return flipped_poly.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
def horizontal_flip_rle(rle, height, width):
|
|
|
|
import pycocotools.mask as mask_util
|
|
|
|
if 'counts' in rle and type(rle['counts']) == list:
|
|
|
|
rle = mask_util.frPyObjects(rle, height, width)
|
|
|
|
mask = mask_util.decode(rle)
|
|
|
|
mask = mask[:, ::-1]
|
|
|
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
|
|
|
return rle
|
|
|
|
|
|
|
|
|
|
|
|
def vertical_flip_poly(poly, height):
|
|
|
|
flipped_poly = np.array(poly)
|
|
|
|
flipped_poly[1::2] = height - np.array(poly[1::2])
|
|
|
|
return flipped_poly.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
def vertical_flip_rle(rle, height, width):
|
|
|
|
import pycocotools.mask as mask_util
|
|
|
|
if 'counts' in rle and type(rle['counts']) == list:
|
|
|
|
rle = mask_util.frPyObjects(rle, height, width)
|
|
|
|
mask = mask_util.decode(rle)
|
|
|
|
mask = mask[::-1, :]
|
|
|
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
|
|
|
return rle
|
|
|
|
|
|
|
|
|
|
|
|
def crop_poly(segm, crop):
|
|
|
|
xmin, ymin, xmax, ymax = crop
|
|
|
|
crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
|
|
|
|
crop_p = np.array(crop_coord).reshape(4, 2)
|
|
|
|
crop_p = Polygon(crop_p)
|
|
|
|
|
|
|
|
crop_segm = list()
|
|
|
|
for poly in segm:
|
|
|
|
poly = np.array(poly).reshape(len(poly) // 2, 2)
|
|
|
|
polygon = Polygon(poly)
|
|
|
|
if not polygon.is_valid:
|
|
|
|
exterior = polygon.exterior
|
|
|
|
multi_lines = exterior.intersection(exterior)
|
|
|
|
polygons = shapely.ops.polygonize(multi_lines)
|
|
|
|
polygon = MultiPolygon(polygons)
|
|
|
|
multi_polygon = list()
|
|
|
|
if isinstance(polygon, MultiPolygon):
|
|
|
|
multi_polygon = copy.deepcopy(polygon)
|
|
|
|
else:
|
|
|
|
multi_polygon.append(copy.deepcopy(polygon))
|
|
|
|
for per_polygon in multi_polygon:
|
|
|
|
inter = per_polygon.intersection(crop_p)
|
|
|
|
if not inter:
|
|
|
|
continue
|
|
|
|
if isinstance(inter, (MultiPolygon, GeometryCollection)):
|
|
|
|
for part in inter:
|
|
|
|
if not isinstance(part, Polygon):
|
|
|
|
continue
|
|
|
|
part = np.squeeze(
|
|
|
|
np.array(part.exterior.coords[:-1]).reshape(1, -1))
|
|
|
|
part[0::2] -= xmin
|
|
|
|
part[1::2] -= ymin
|
|
|
|
crop_segm.append(part.tolist())
|
|
|
|
elif isinstance(inter, Polygon):
|
|
|
|
crop_poly = np.squeeze(
|
|
|
|
np.array(inter.exterior.coords[:-1]).reshape(1, -1))
|
|
|
|
crop_poly[0::2] -= xmin
|
|
|
|
crop_poly[1::2] -= ymin
|
|
|
|
crop_segm.append(crop_poly.tolist())
|
|
|
|
else:
|
|
|
|
continue
|
|
|
|
return crop_segm
|
|
|
|
|
|
|
|
|
|
|
|
def crop_rle(rle, crop, height, width):
|
|
|
|
import pycocotools.mask as mask_util
|
|
|
|
if 'counts' in rle and type(rle['counts']) == list:
|
|
|
|
rle = mask_util.frPyObjects(rle, height, width)
|
|
|
|
mask = mask_util.decode(rle)
|
|
|
|
mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
|
|
|
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
|
|
|
return rle
|
|
|
|
|
|
|
|
|
|
|
|
def expand_poly(poly, x, y):
|
|
|
|
expanded_poly = np.array(poly)
|
|
|
|
expanded_poly[0::2] += x
|
|
|
|
expanded_poly[1::2] += y
|
|
|
|
return expanded_poly.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
def expand_rle(rle, x, y, height, width, h, w):
|
|
|
|
import pycocotools.mask as mask_util
|
|
|
|
if 'counts' in rle and type(rle['counts']) == list:
|
|
|
|
rle = mask_util.frPyObjects(rle, height, width)
|
|
|
|
mask = mask_util.decode(rle)
|
|
|
|
expanded_mask = np.full((h, w), 0).astype(mask.dtype)
|
|
|
|
expanded_mask[y:y + height, x:x + width] = mask
|
|
|
|
rle = mask_util.encode(np.array(expanded_mask, order='F', dtype=np.uint8))
|
|
|
|
return rle
|
|
|
|
|
|
|
|
|
|
|
|
def resize_poly(poly, im_scale_x, im_scale_y):
|
|
|
|
resized_poly = np.array(poly, dtype=np.float32)
|
|
|
|
resized_poly[0::2] *= im_scale_x
|
|
|
|
resized_poly[1::2] *= im_scale_y
|
|
|
|
return resized_poly.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
def resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y, interp):
|
|
|
|
import pycocotools.mask as mask_util
|
|
|
|
if 'counts' in rle and type(rle['counts']) == list:
|
|
|
|
rle = mask_util.frPyObjects(rle, im_h, im_w)
|
|
|
|
mask = mask_util.decode(rle)
|
|
|
|
mask = cv2.resize(
|
|
|
|
mask, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
|
|
|
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
|
|
|
return rle
|
|
|
|
|
|
|
|
|
|
|
|
def to_uint8(im):
|
|
|
|
""" Convert raster to uint8.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (np.ndarray): The image.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: Image on uint8.
|
|
|
|
"""
|
|
|
|
# 2% linear stretch
|
|
|
|
def _two_percentLinear(image, max_out=255, min_out=0):
|
|
|
|
def _gray_process(gray, maxout=max_out, minout=min_out):
|
|
|
|
# get the corresponding gray level at 98% histogram
|
|
|
|
high_value = np.percentile(gray, 98)
|
|
|
|
low_value = np.percentile(gray, 2)
|
|
|
|
truncated_gray = np.clip(gray, a_min=low_value, a_max=high_value)
|
|
|
|
processed_gray = ((truncated_gray - low_value) / (high_value - low_value)) * \
|
|
|
|
(maxout - minout)
|
|
|
|
return processed_gray
|
|
|
|
if len(image.shape) == 3:
|
|
|
|
processes = []
|
|
|
|
for b in range(image.shape[-1]):
|
|
|
|
processes.append(_gray_process(image[:, :, b]))
|
|
|
|
result = np.stack(processes, axis=2)
|
|
|
|
else: # if len(image.shape) == 2
|
|
|
|
result = _gray_process(image)
|
|
|
|
return np.uint8(result)
|
|
|
|
|
|
|
|
# simple image standardization
|
|
|
|
def _sample_norm(image, NUMS=65536):
|
|
|
|
stretches = []
|
|
|
|
if len(image.shape) == 3:
|
|
|
|
for b in range(image.shape[-1]):
|
|
|
|
stretched = _stretch(image[:, :, b], NUMS)
|
|
|
|
stretched /= float(NUMS)
|
|
|
|
stretches.append(stretched)
|
|
|
|
stretched_img = np.stack(stretches, axis=2)
|
|
|
|
else: # if len(image.shape) == 2
|
|
|
|
stretched_img = _stretch(image, NUMS)
|
|
|
|
return np.uint8(stretched_img * 255)
|
|
|
|
|
|
|
|
# histogram equalization
|
|
|
|
def _stretch(ima, NUMS):
|
|
|
|
hist = _histogram(ima, NUMS)
|
|
|
|
lut = []
|
|
|
|
for bt in range(0, len(hist), NUMS):
|
|
|
|
# step size
|
|
|
|
step = reduce(operator.add, hist[bt : bt + NUMS]) / (NUMS - 1)
|
|
|
|
# create balanced lookup table
|
|
|
|
n = 0
|
|
|
|
for i in range(NUMS):
|
|
|
|
lut.append(n / step)
|
|
|
|
n += hist[i + bt]
|
|
|
|
np.take(lut, ima, out=ima)
|
|
|
|
return ima
|
|
|
|
|
|
|
|
# calculate histogram
|
|
|
|
def _histogram(ima, NUMS):
|
|
|
|
bins = list(range(0, NUMS))
|
|
|
|
flat = ima.flat
|
|
|
|
n = np.searchsorted(np.sort(flat), bins)
|
|
|
|
n = np.concatenate([n, [len(flat)]])
|
|
|
|
hist = n[1:] - n[:-1]
|
|
|
|
return hist
|
|
|
|
|
|
|
|
dtype = im.dtype.name
|
|
|
|
dtypes = ["uint8", "uint16", "float32"]
|
|
|
|
if dtype not in dtypes:
|
|
|
|
raise ValueError(f"'dtype' must be uint8/uint16/float32, not {dtype}.")
|
|
|
|
if dtype == "uint8":
|
|
|
|
return im
|
|
|
|
else:
|
|
|
|
if dtype == "float32":
|
|
|
|
im = _sample_norm(im)
|
|
|
|
return _two_percentLinear(im)
|
|
|
|
|
|
|
|
|
|
|
|
def to_intensity(im):
|
|
|
|
""" calculate SAR data's intensity diagram.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (np.ndarray): The SAR image.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: Intensity diagram.
|
|
|
|
"""
|
|
|
|
if len(im.shape) != 2:
|
|
|
|
raise ValueError("im's shape must be 2.")
|
|
|
|
# the type is complex means this is a SAR data
|
|
|
|
if isinstance(type(im[0, 0]), complex):
|
|
|
|
im = abs(im)
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def select_bands(im, band_list=[1, 2, 3]):
|
|
|
|
""" Select bands.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (np.ndarray): The image.
|
|
|
|
band_list (list, optional): Bands of selected (Start with 1). Defaults to [1, 2, 3].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: The image after band selected.
|
|
|
|
"""
|
|
|
|
total_band = im.shape[-1]
|
|
|
|
result = []
|
|
|
|
for band in band_list:
|
|
|
|
band = int(band - 1)
|
|
|
|
if band < 0 or band >= total_band:
|
|
|
|
raise ValueError(
|
|
|
|
"The element in band_list must > 1 and <= {}.".format(str(total_band)))
|
|
|
|
result.append()
|
|
|
|
ima = np.stack(result, axis=0)
|
|
|
|
return ima
|
|
|
|
|
|
|
|
|
|
|
|
def de_haze(im, gamma=False):
|
|
|
|
""" Priori defogging of dark channel. (Just RGB)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (np.ndarray): The image.
|
|
|
|
gamma (bool, optional): Use gamma correction or not. Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: The image after defogged.
|
|
|
|
"""
|
|
|
|
def _guided_filter(I, p, r, eps):
|
|
|
|
m_I = cv2.boxFilter(I, -1, (r, r))
|
|
|
|
m_p = cv2.boxFilter(p, -1, (r, r))
|
|
|
|
m_Ip = cv2.boxFilter(I * p, -1, (r, r))
|
|
|
|
cov_Ip = m_Ip - m_I * m_p
|
|
|
|
m_II = cv2.boxFilter(I * I, -1, (r, r))
|
|
|
|
var_I = m_II - m_I * m_I
|
|
|
|
a = cov_Ip / (var_I + eps)
|
|
|
|
b = m_p - a * m_I
|
|
|
|
m_a = cv2.boxFilter(a, -1, (r, r))
|
|
|
|
m_b = cv2.boxFilter(b, -1, (r, r))
|
|
|
|
return m_a * I + m_b
|
|
|
|
|
|
|
|
def _de_fog(im, r, w, maxatmo_mask, eps):
|
|
|
|
# im is RGB and range[0, 1]
|
|
|
|
atmo_mask = np.min(im, 2)
|
|
|
|
dark_channel = cv2.erode(atmo_mask, np.ones((15, 15)))
|
|
|
|
atmo_mask = _guided_filter(atmo_mask, dark_channel, r, eps)
|
|
|
|
bins = 2000
|
|
|
|
ht = np.histogram(atmo_mask, bins)
|
|
|
|
d = np.cumsum(ht[0]) / float(atmo_mask.size)
|
|
|
|
for lmax in range(bins - 1, 0, -1):
|
|
|
|
if d[lmax] <= 0.999:
|
|
|
|
break
|
|
|
|
atmo_illum = np.mean(im, 2)[atmo_mask >= ht[1][lmax]].max()
|
|
|
|
atmo_mask = np.minimum(atmo_mask * w, maxatmo_mask)
|
|
|
|
return atmo_mask, atmo_illum
|
|
|
|
|
|
|
|
if np.max(im) > 1:
|
|
|
|
im = im / 255.
|
|
|
|
result = np.zeros(im.shape)
|
|
|
|
mask_img, atmo_illum = _de_fog(im, r=81, w=0.95, maxatmo_mask=0.80, eps=1e-8)
|
|
|
|
for k in range(3):
|
|
|
|
result[:, :, k] = (im[:, :, k] - mask_img) / (1 - mask_img / atmo_illum)
|
|
|
|
result = np.clip(result, 0, 1)
|
|
|
|
if gamma:
|
|
|
|
result = result ** (np.log(0.5) / np.log(result.mean()))
|
|
|
|
return (result * 255).astype("uint8")
|
|
|
|
|
|
|
|
|
|
|
|
def pca(im, dim=3, whiten=True):
|
|
|
|
""" Dimensionality reduction of PCA.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (np.ndarray): The image.
|
|
|
|
dim (int, optional): Reserved dimensions. Defaults to 3.
|
|
|
|
whiten (bool, optional): PCA whiten or not. Defaults to True.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: The image after PCA.
|
|
|
|
"""
|
|
|
|
H, W, C = im.shape
|
|
|
|
n_im = np.reshape(im, (-1, C))
|
|
|
|
pca = PCA(n_components=dim, whiten=whiten)
|
|
|
|
im_pca = pca.fit_transform(n_im)
|
|
|
|
result = np.reshape(im_pca, (H, W, dim))
|
|
|
|
result = np.clip(result, 0, 1)
|
|
|
|
return (result * 255).astype("uint8")
|
|
|
|
|
|
|
|
|
|
|
|
def match_histograms(im, ref):
|
|
|
|
"""
|
|
|
|
Match the cumulative histogram of one image to another.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (np.ndarray): The input image.
|
|
|
|
ref (np.ndarray): The reference image to match histogram of. `ref` must have the same number of channels as `im`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: The transformed input image.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: When the number of channels of `ref` differs from that of im`.
|
|
|
|
"""
|
|
|
|
# TODO: Check the data types of the inputs to see if they are supported by skimage
|
|
|
|
return exposure.match_histograms(im, ref, channel_axis=-1 if im.ndim>2 else None)
|
|
|
|
|
|
|
|
|
|
|
|
def match_by_regression(im, ref, pif_loc=None):
|
|
|
|
"""
|
|
|
|
Match the brightness values of two images using a linear regression method.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (np.ndarray): The input image.
|
|
|
|
ref (np.ndarray): The reference image to match. `ref` must have the same shape as `im`.
|
|
|
|
pif_loc (tuple|None, optional): The spatial locations where pseudo-invariant features (PIFs) are obtained. If
|
|
|
|
`pif_loc` is set to None, all pixels in the image will be used as training samples for the regression model.
|
|
|
|
In other cases, `pif_loc` should be a tuple of np.ndarrays. Default: None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: The transformed input image.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: When the shape of `ref` differs from that of `im`.
|
|
|
|
"""
|
|
|
|
def _linear_regress(im, ref, loc):
|
|
|
|
regressor = LinearRegression()
|
|
|
|
if loc is not None:
|
|
|
|
x, y = im[loc], ref[loc]
|
|
|
|
else:
|
|
|
|
x, y = im, ref
|
|
|
|
x, y = x.reshape(-1,1), y.ravel()
|
|
|
|
regressor.fit(x, y)
|
|
|
|
matched = regressor.predict(im.reshape(-1,1))
|
|
|
|
return matched.reshape(im.shape)
|
|
|
|
|
|
|
|
if im.shape != ref.shape:
|
|
|
|
raise ValueError("Image and Reference must have the same shape!")
|
|
|
|
|
|
|
|
if im.ndim > 2:
|
|
|
|
# Multiple channels
|
|
|
|
matched = np.empty(im.shape, dtype=im.dtype)
|
|
|
|
for ch in range(im.shape[-1]):
|
|
|
|
matched[..., ch] = _linear_regress(im[..., ch], ref[..., ch], pif_loc)
|
|
|
|
else:
|
|
|
|
# Single channel
|
|
|
|
matched = _linear_regress(im, ref, pif_loc).astype(im.dtype)
|
|
|
|
|
|
|
|
return matched
|