|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os.path as osp
|
|
|
|
import copy
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic
|
|
|
|
|
|
|
|
|
|
|
|
class SegDataset(BaseDataset):
|
|
|
|
"""
|
|
|
|
Dataset for semantic segmentation tasks.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_dir (str): Root directory of the dataset.
|
|
|
|
file_list (str): Path of the file that contains relative paths of images and annotation files.
|
|
|
|
transforms (paddlers.transforms.Compose): Data preprocessing and data augmentation operators to apply.
|
|
|
|
label_list (str|None, optional): Path of the file that contains the category names. Defaults to None.
|
|
|
|
num_workers (int|str, optional): Number of processes used for data loading. If `num_workers` is 'auto',
|
|
|
|
the number of workers will be automatically determined according to the number of CPU cores: If
|
|
|
|
there are more than 16 cores,8 workers will be used. Otherwise, the number of workers will be half
|
|
|
|
the number of CPU cores. Defaults: 'auto'.
|
|
|
|
shuffle (bool, optional): Whether to shuffle the samples. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
data_dir,
|
|
|
|
file_list,
|
|
|
|
transforms,
|
|
|
|
label_list=None,
|
|
|
|
num_workers='auto',
|
|
|
|
shuffle=False):
|
|
|
|
super(SegDataset, self).__init__(data_dir, label_list, transforms,
|
|
|
|
num_workers, shuffle)
|
|
|
|
# TODO: batch padding
|
|
|
|
self.batch_transforms = None
|
|
|
|
self.file_list = list()
|
|
|
|
self.labels = list()
|
|
|
|
|
|
|
|
if label_list is not None:
|
|
|
|
with open(label_list, encoding=get_encoding(label_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
item = line.strip()
|
|
|
|
self.labels.append(item)
|
|
|
|
with open(file_list, encoding=get_encoding(file_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
items = line.strip().split()
|
|
|
|
if len(items) > 2:
|
|
|
|
raise ValueError(
|
|
|
|
"A space is defined as the delimiter to separate the image and label path, " \
|
|
|
|
"so the space cannot be in the image or label path, but the line[{}] of " \
|
|
|
|
" file_list[{}] has a space in the image or label path.".format(line, file_list))
|
|
|
|
items[0] = norm_path(items[0])
|
|
|
|
items[1] = norm_path(items[1])
|
|
|
|
full_path_im = osp.join(data_dir, items[0])
|
|
|
|
full_path_label = osp.join(data_dir, items[1])
|
|
|
|
if not is_pic(full_path_im) or not is_pic(full_path_label):
|
|
|
|
continue
|
|
|
|
if not osp.exists(full_path_im):
|
|
|
|
raise IOError('Image file {} does not exist!'.format(
|
|
|
|
full_path_im))
|
|
|
|
if not osp.exists(full_path_label):
|
|
|
|
raise IOError('Label file {} does not exist!'.format(
|
|
|
|
full_path_label))
|
|
|
|
self.file_list.append({
|
|
|
|
'image': full_path_im,
|
|
|
|
'mask': full_path_label
|
|
|
|
})
|
|
|
|
self.num_samples = len(self.file_list)
|
|
|
|
logging.info("{} samples in file {}".format(
|
|
|
|
len(self.file_list), file_list))
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.file_list)
|