|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import copy
|
|
|
|
import os.path as osp
|
|
|
|
|
|
|
|
from .operators import *
|
|
|
|
from .batch_operators import BatchRandomResize, BatchRandomResizeByShort, _BatchPad
|
|
|
|
from paddlers import transforms as T
|
|
|
|
|
|
|
|
|
|
|
|
def decode_image(im_path,
|
|
|
|
to_rgb=True,
|
|
|
|
to_uint8=True,
|
|
|
|
decode_bgr=True,
|
|
|
|
decode_sar=True,
|
|
|
|
read_geo_info=False,
|
|
|
|
use_stretch=False,
|
|
|
|
read_raw=False):
|
|
|
|
"""
|
|
|
|
Decode an image.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im_path (str): Path of the image to decode.
|
|
|
|
to_rgb (bool, optional): (Deprecated) If True, convert input image(s) from
|
|
|
|
BGR format to RGB format. Defaults to True.
|
|
|
|
to_uint8 (bool, optional): If True, quantize and convert decoded image(s) to
|
|
|
|
uint8 type. Defaults to True.
|
|
|
|
decode_bgr (bool, optional): If True, automatically interpret a non-geo
|
|
|
|
image (e.g. jpeg images) as a BGR image. Defaults to True.
|
|
|
|
decode_sar (bool, optional): If True, automatically interpret a single-channel
|
|
|
|
geo image (e.g. geotiff images) as a SAR image, set this argument to
|
|
|
|
True. Defaults to True.
|
|
|
|
read_geo_info (bool, optional): If True, read geographical information from
|
|
|
|
the image. Deafults to False.
|
|
|
|
use_stretch (bool, optional): Whether to apply 2% linear stretch. Valid only if
|
|
|
|
`to_uint8` is True. Defaults to False.
|
|
|
|
read_raw (bool, optional): If True, equivalent to setting `to_rgb` to `True` and
|
|
|
|
`to_uint8` to False. Setting `read_raw` takes precedence over setting `to_rgb`
|
|
|
|
and `to_uint8`. Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray|tuple: If `read_geo_info` is False, return the decoded image.
|
|
|
|
Otherwise, return a tuple that contains the decoded image and a dictionary
|
|
|
|
of geographical information (e.g. geographical transform and geographical
|
|
|
|
projection).
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Do a presence check. osp.exists() assumes `im_path` is a path-like object.
|
|
|
|
if not osp.exists(im_path):
|
|
|
|
raise ValueError(f"{im_path} does not exist!")
|
|
|
|
if read_raw:
|
|
|
|
to_rgb = True
|
|
|
|
to_uint8 = False
|
|
|
|
decoder = T.DecodeImg(
|
|
|
|
to_rgb=to_rgb,
|
|
|
|
to_uint8=to_uint8,
|
|
|
|
decode_bgr=decode_bgr,
|
|
|
|
decode_sar=decode_sar,
|
|
|
|
read_geo_info=read_geo_info,
|
|
|
|
use_stretch=use_stretch)
|
|
|
|
# Deepcopy to avoid inplace modification
|
|
|
|
sample = {'image': copy.deepcopy(im_path)}
|
|
|
|
sample = decoder(sample)
|
|
|
|
if read_geo_info:
|
|
|
|
return sample['image'], sample['geo_info_dict']
|
|
|
|
else:
|
|
|
|
return sample['image']
|
|
|
|
|
|
|
|
|
|
|
|
def build_transforms(transforms_info):
|
|
|
|
transforms = list()
|
|
|
|
for op_info in transforms_info:
|
|
|
|
op_name = list(op_info.keys())[0]
|
|
|
|
op_attr = op_info[op_name]
|
|
|
|
if not hasattr(T, op_name):
|
|
|
|
raise ValueError(
|
|
|
|
"There is no transform operator named '{}'.".format(op_name))
|
|
|
|
transforms.append(getattr(T, op_name)(**op_attr))
|
|
|
|
eval_transforms = T.Compose(transforms)
|
|
|
|
return eval_transforms
|