|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import copy
|
|
|
|
import random
|
|
|
|
from numbers import Number
|
|
|
|
from functools import partial
|
|
|
|
from operator import methodcaller
|
|
|
|
from collections.abc import Sequence
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import imghdr
|
|
|
|
from PIL import Image
|
|
|
|
from joblib import load
|
|
|
|
|
|
|
|
import paddlers
|
|
|
|
import paddlers.transforms.functions as F
|
|
|
|
import paddlers.transforms.indices as indices
|
|
|
|
import paddlers.transforms.satellites as satellites
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
"Compose",
|
|
|
|
"DecodeImg",
|
|
|
|
"Resize",
|
|
|
|
"RandomResize",
|
|
|
|
"ResizeByShort",
|
|
|
|
"RandomResizeByShort",
|
|
|
|
"ResizeByLong",
|
|
|
|
"RandomHorizontalFlip",
|
|
|
|
"RandomVerticalFlip",
|
|
|
|
"Normalize",
|
|
|
|
"CenterCrop",
|
|
|
|
"RandomCrop",
|
|
|
|
"RandomScaleAspect",
|
|
|
|
"RandomExpand",
|
|
|
|
"Pad",
|
|
|
|
"MixupImage",
|
|
|
|
"RandomDistort",
|
|
|
|
"RandomBlur",
|
|
|
|
"RandomSwap",
|
|
|
|
"Dehaze",
|
|
|
|
"ReduceDim",
|
|
|
|
"SelectBand",
|
|
|
|
"RandomFlipOrRotate",
|
|
|
|
"ReloadMask",
|
|
|
|
"AppendIndex",
|
|
|
|
"MatchRadiance",
|
|
|
|
"ArrangeRestorer",
|
|
|
|
"ArrangeSegmenter",
|
|
|
|
"ArrangeChangeDetector",
|
|
|
|
"ArrangeClassifier",
|
|
|
|
"ArrangeDetector",
|
|
|
|
]
|
|
|
|
|
|
|
|
interp_dict = {
|
|
|
|
'NEAREST': cv2.INTER_NEAREST,
|
|
|
|
'LINEAR': cv2.INTER_LINEAR,
|
|
|
|
'CUBIC': cv2.INTER_CUBIC,
|
|
|
|
'AREA': cv2.INTER_AREA,
|
|
|
|
'LANCZOS4': cv2.INTER_LANCZOS4
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Compose(object):
|
|
|
|
"""
|
|
|
|
Apply a series of data augmentation strategies to the input.
|
|
|
|
All input images should be in Height-Width-Channel ([H, W, C]) format.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
transforms (list[paddlers.transforms.Transform]): List of data preprocess or
|
|
|
|
augmentation operators.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of transforms.
|
|
|
|
ValueError: Invalid length of transforms.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, transforms):
|
|
|
|
super(Compose, self).__init__()
|
|
|
|
if not isinstance(transforms, list):
|
|
|
|
raise TypeError(
|
|
|
|
"Type of transforms is invalid. Must be a list, but received is {}."
|
|
|
|
.format(type(transforms)))
|
|
|
|
if len(transforms) < 1:
|
|
|
|
raise ValueError(
|
|
|
|
"Length of transforms must not be less than 1, but received is {}."
|
|
|
|
.format(len(transforms)))
|
|
|
|
transforms = copy.deepcopy(transforms)
|
|
|
|
self.arrange = self._pick_arrange(transforms)
|
|
|
|
self.transforms = transforms
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
"""
|
|
|
|
This is equivalent to sequentially calling compose_obj.apply_transforms()
|
|
|
|
and compose_obj.arrange_outputs().
|
|
|
|
"""
|
|
|
|
|
|
|
|
sample = self.apply_transforms(sample)
|
|
|
|
sample = self.arrange_outputs(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
def apply_transforms(self, sample):
|
|
|
|
for op in self.transforms:
|
|
|
|
# Skip batch transforms amd mixup
|
|
|
|
if isinstance(op, (paddlers.transforms.BatchRandomResize,
|
|
|
|
paddlers.transforms.BatchRandomResizeByShort,
|
|
|
|
MixupImage)):
|
|
|
|
continue
|
|
|
|
sample = op(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
def arrange_outputs(self, sample):
|
|
|
|
if self.arrange is not None:
|
|
|
|
sample = self.arrange(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
def _pick_arrange(self, transforms):
|
|
|
|
arrange = None
|
|
|
|
for idx, op in enumerate(transforms):
|
|
|
|
if isinstance(op, Arrange):
|
|
|
|
if idx != len(transforms) - 1:
|
|
|
|
raise ValueError(
|
|
|
|
"Arrange operator must be placed at the end of the list."
|
|
|
|
)
|
|
|
|
arrange = transforms.pop(idx)
|
|
|
|
return arrange
|
|
|
|
|
|
|
|
|
|
|
|
class Transform(object):
|
|
|
|
"""
|
|
|
|
Parent class of all data augmentation operators.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox):
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
def apply_segm(self, segms):
|
|
|
|
return segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'image' in sample:
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
else: # image_tx
|
|
|
|
sample['image'] = self.apply_im(sample['image_t1'])
|
|
|
|
sample['image2'] = self.apply_im(sample['image_t2'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'gt_bbox' in sample:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(self.apply_mask, sample['aux_masks']))
|
|
|
|
if 'target' in sample:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
if isinstance(sample, Sequence):
|
|
|
|
sample = [self.apply(s) for s in sample]
|
|
|
|
else:
|
|
|
|
sample = self.apply(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class DecodeImg(Transform):
|
|
|
|
"""
|
|
|
|
Decode image(s) in input.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
to_rgb (bool, optional): If True, convert input image(s) from BGR format to
|
|
|
|
RGB format. Defaults to True.
|
|
|
|
to_uint8 (bool, optional): If True, quantize and convert decoded image(s) to
|
|
|
|
uint8 type. Defaults to True.
|
|
|
|
decode_bgr (bool, optional): If True, automatically interpret a non-geo image
|
|
|
|
(e.g., jpeg images) as a BGR image. Defaults to True.
|
|
|
|
decode_sar (bool, optional): If True, automatically interpret a single-channel
|
|
|
|
geo image (e.g. geotiff images) as a SAR image, set this argument to
|
|
|
|
True. Defaults to True.
|
|
|
|
read_geo_info (bool, optional): If True, read geographical information from
|
|
|
|
the image. Deafults to False.
|
|
|
|
use_stretch (bool, optional): Whether to apply 2% linear stretch. Valid only if
|
|
|
|
`to_uint8` is True. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
to_rgb=True,
|
|
|
|
to_uint8=True,
|
|
|
|
decode_bgr=True,
|
|
|
|
decode_sar=True,
|
|
|
|
read_geo_info=False,
|
|
|
|
use_stretch=False):
|
|
|
|
super(DecodeImg, self).__init__()
|
|
|
|
self.to_rgb = to_rgb
|
|
|
|
self.to_uint8 = to_uint8
|
|
|
|
self.decode_bgr = decode_bgr
|
|
|
|
self.decode_sar = decode_sar
|
|
|
|
self.read_geo_info = read_geo_info
|
|
|
|
self.use_stretch = use_stretch
|
|
|
|
|
|
|
|
def read_img(self, img_path):
|
|
|
|
img_format = imghdr.what(img_path)
|
|
|
|
name, ext = os.path.splitext(img_path)
|
|
|
|
geo_trans, geo_proj = None, None
|
|
|
|
|
|
|
|
if img_format == 'tiff' or ext == '.img':
|
|
|
|
try:
|
|
|
|
import gdal
|
|
|
|
except:
|
|
|
|
try:
|
|
|
|
from osgeo import gdal
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Failed to import gdal! Please install GDAL library according to the document."
|
|
|
|
)
|
|
|
|
|
|
|
|
dataset = gdal.Open(img_path)
|
|
|
|
if dataset == None:
|
|
|
|
raise IOError('Cannot open', img_path)
|
|
|
|
im_data = dataset.ReadAsArray()
|
|
|
|
if im_data.ndim == 2 and self.decode_sar:
|
|
|
|
im_data = F.to_intensity(im_data)
|
|
|
|
im_data = im_data[:, :, np.newaxis]
|
|
|
|
else:
|
|
|
|
if im_data.ndim == 3:
|
|
|
|
im_data = im_data.transpose((1, 2, 0))
|
|
|
|
if self.read_geo_info:
|
|
|
|
geo_trans = dataset.GetGeoTransform()
|
|
|
|
geo_proj = dataset.GetProjection()
|
|
|
|
elif img_format in ['jpeg', 'bmp', 'png', 'jpg']:
|
|
|
|
if self.decode_bgr:
|
|
|
|
im_data = cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
|
|
|
|
cv2.IMREAD_ANYCOLOR | cv2.IMREAD_COLOR)
|
|
|
|
else:
|
|
|
|
im_data = cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
|
|
|
|
cv2.IMREAD_ANYCOLOR)
|
|
|
|
if self.to_rgb and im_data.shape[-1] == 3:
|
|
|
|
im_data = cv2.cvtColor(im_data, cv2.COLOR_BGR2RGB)
|
|
|
|
elif ext == '.npy':
|
|
|
|
im_data = np.load(img_path)
|
|
|
|
else:
|
|
|
|
raise TypeError("Image format {} is not supported!".format(ext))
|
|
|
|
|
|
|
|
if self.read_geo_info:
|
|
|
|
return im_data, geo_trans, geo_proj
|
|
|
|
else:
|
|
|
|
return im_data
|
|
|
|
|
|
|
|
def apply_im(self, im_path):
|
|
|
|
if isinstance(im_path, str):
|
|
|
|
try:
|
|
|
|
data = self.read_img(im_path)
|
|
|
|
except:
|
|
|
|
raise ValueError("Cannot read the image file {}!".format(
|
|
|
|
im_path))
|
|
|
|
if self.read_geo_info:
|
|
|
|
image, geo_trans, geo_proj = data
|
|
|
|
geo_info_dict = {'geo_trans': geo_trans, 'geo_proj': geo_proj}
|
|
|
|
else:
|
|
|
|
image = data
|
|
|
|
else:
|
|
|
|
image = im_path
|
|
|
|
|
|
|
|
if self.to_uint8:
|
|
|
|
image = F.to_uint8(image, stretch=self.use_stretch)
|
|
|
|
|
|
|
|
if self.read_geo_info:
|
|
|
|
return image, geo_info_dict
|
|
|
|
else:
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
try:
|
|
|
|
mask = np.asarray(Image.open(mask))
|
|
|
|
except:
|
|
|
|
raise ValueError("Cannot read the mask file {}!".format(mask))
|
|
|
|
if len(mask.shape) != 2:
|
|
|
|
raise ValueError(
|
|
|
|
"Mask should be a 1-channel image, but recevied is a {}-channel image.".
|
|
|
|
format(mask.shape[2]))
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
sample (dict): Input sample.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: Sample with decoded images.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if 'image' in sample:
|
|
|
|
if self.read_geo_info:
|
|
|
|
image, geo_info_dict = self.apply_im(sample['image'])
|
|
|
|
sample['image'] = image
|
|
|
|
sample['geo_info_dict'] = geo_info_dict
|
|
|
|
else:
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
|
|
|
|
if 'image2' in sample:
|
|
|
|
if self.read_geo_info:
|
|
|
|
image2, geo_info_dict2 = self.apply_im(sample['image2'])
|
|
|
|
sample['image2'] = image2
|
|
|
|
sample['geo_info_dict2'] = geo_info_dict2
|
|
|
|
else:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
|
|
|
|
if 'image_t1' in sample and not 'image' in sample:
|
|
|
|
if not ('image_t2' in sample and 'image2' not in sample):
|
|
|
|
raise ValueError
|
|
|
|
if self.read_geo_info:
|
|
|
|
image, geo_info_dict = self.apply_im(sample['image_t1'])
|
|
|
|
sample['image'] = image
|
|
|
|
sample['geo_info_dict'] = geo_info_dict
|
|
|
|
else:
|
|
|
|
sample['image'] = self.apply_im(sample['image_t1'])
|
|
|
|
if self.read_geo_info:
|
|
|
|
image2, geo_info_dict2 = self.apply_im(sample['image_t2'])
|
|
|
|
sample['image2'] = image2
|
|
|
|
sample['geo_info_dict2'] = geo_info_dict2
|
|
|
|
else:
|
|
|
|
sample['image2'] = self.apply_im(sample['image_t2'])
|
|
|
|
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask_ori'] = copy.deepcopy(sample['mask'])
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
im_height, im_width, _ = sample['image'].shape
|
|
|
|
se_height, se_width = sample['mask'].shape
|
|
|
|
if im_height != se_height or im_width != se_width:
|
|
|
|
raise ValueError(
|
|
|
|
"The height or width of the image is not same as the mask.")
|
|
|
|
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks_ori'] = copy.deepcopy(sample['aux_masks'])
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(self.apply_mask, sample['aux_masks']))
|
|
|
|
# TODO: check the shape of auxiliary masks
|
|
|
|
|
|
|
|
if 'target' in sample:
|
|
|
|
if self.read_geo_info:
|
|
|
|
target, geo_info_dict = self.apply_im(sample['target'])
|
|
|
|
sample['target'] = target
|
|
|
|
sample['geo_info_dict_tar'] = geo_info_dict
|
|
|
|
else:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
|
|
|
|
sample['im_shape'] = np.array(
|
|
|
|
sample['image'].shape[:2], dtype=np.float32)
|
|
|
|
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Resize(Transform):
|
|
|
|
"""
|
|
|
|
Resize input.
|
|
|
|
|
|
|
|
- If `target_size` is an int, resize the image(s) to (`target_size`, `target_size`).
|
|
|
|
- If `target_size` is a list or tuple, resize the image(s) to `target_size`.
|
|
|
|
Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target_size (int | list[int] | tuple[int]): Target size. If it is an integer, the
|
|
|
|
target height and width will be both set to `target_size`. Otherwise,
|
|
|
|
`target_size` represents [target height, target width].
|
|
|
|
interp (str, optional): Interpolation method for resizing image(s). One of
|
|
|
|
{'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
|
|
|
|
Defaults to 'LINEAR'.
|
|
|
|
keep_ratio (bool, optional): If True, the scaling factor of width and height will
|
|
|
|
be set to same value, and height/width of the resized image will be not
|
|
|
|
greater than the target width/height. Defaults to False.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of target_size.
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
|
|
|
|
super(Resize, self).__init__()
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("`interp` should be one of {}.".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
if isinstance(target_size, int):
|
|
|
|
target_size = (target_size, target_size)
|
|
|
|
else:
|
|
|
|
if not (isinstance(target_size,
|
|
|
|
(list, tuple)) and len(target_size) == 2):
|
|
|
|
raise TypeError(
|
|
|
|
"`target_size` should be an int or a list of length 2, but received {}.".
|
|
|
|
format(target_size))
|
|
|
|
# (height, width)
|
|
|
|
self.target_size = target_size
|
|
|
|
self.interp = interp
|
|
|
|
self.keep_ratio = keep_ratio
|
|
|
|
|
|
|
|
def apply_im(self, image, interp, target_size):
|
|
|
|
flag = image.shape[2] == 1
|
|
|
|
image = cv2.resize(image, target_size, interpolation=interp)
|
|
|
|
if flag:
|
|
|
|
image = image[:, :, np.newaxis]
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask, target_size):
|
|
|
|
mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, scale, target_size):
|
|
|
|
im_scale_x, im_scale_y = scale
|
|
|
|
bbox[:, 0::2] *= im_scale_x
|
|
|
|
bbox[:, 1::2] *= im_scale_y
|
|
|
|
bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0])
|
|
|
|
bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1])
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
def apply_segm(self, segms, im_size, scale):
|
|
|
|
im_h, im_w = im_size
|
|
|
|
im_scale_x, im_scale_y = scale
|
|
|
|
resized_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if F.is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
resized_segms.append([
|
|
|
|
F.resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
|
|
|
|
])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
resized_segms.append(
|
|
|
|
F.resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
|
|
|
|
|
|
|
|
return resized_segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.interp == "RANDOM":
|
|
|
|
interp = random.choice(list(interp_dict.values()))
|
|
|
|
else:
|
|
|
|
interp = interp_dict[self.interp]
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
|
|
|
|
im_scale_y = self.target_size[0] / im_h
|
|
|
|
im_scale_x = self.target_size[1] / im_w
|
|
|
|
target_size = (self.target_size[1], self.target_size[0])
|
|
|
|
if self.keep_ratio:
|
|
|
|
scale = min(im_scale_y, im_scale_x)
|
|
|
|
target_w = int(round(im_w * scale))
|
|
|
|
target_h = int(round(im_h * scale))
|
|
|
|
target_size = (target_w, target_h)
|
|
|
|
im_scale_y = target_h / im_h
|
|
|
|
im_scale_x = target_w / im_w
|
|
|
|
|
|
|
|
sample['image'] = self.apply_im(sample['image'], interp, target_size)
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'], interp,
|
|
|
|
target_size)
|
|
|
|
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], target_size)
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(partial(
|
|
|
|
self.apply_mask, target_size=target_size),
|
|
|
|
sample['aux_masks']))
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(
|
|
|
|
sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(
|
|
|
|
sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
|
|
|
|
if 'target' in sample:
|
|
|
|
if 'sr_factor' in sample:
|
|
|
|
# For SR tasks
|
|
|
|
sample['target'] = self.apply_im(
|
|
|
|
sample['target'], interp,
|
|
|
|
F.calc_hr_shape(target_size, sample['sr_factor']))
|
|
|
|
else:
|
|
|
|
# For non-SR tasks
|
|
|
|
sample['target'] = self.apply_im(sample['target'], interp,
|
|
|
|
target_size)
|
|
|
|
|
|
|
|
sample['im_shape'] = np.asarray(
|
|
|
|
sample['image'].shape[:2], dtype=np.float32)
|
|
|
|
if 'scale_factor' in sample:
|
|
|
|
scale_factor = sample['scale_factor']
|
|
|
|
sample['scale_factor'] = np.asarray(
|
|
|
|
[scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
|
|
|
|
dtype=np.float32)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomResize(Transform):
|
|
|
|
"""
|
|
|
|
Resize input to random sizes.
|
|
|
|
|
|
|
|
Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target_sizes (list[int] | list[list|tuple] | tuple[list|tuple]):
|
|
|
|
Multiple target sizes, each of which should be int, list, or tuple.
|
|
|
|
interp (str, optional): Interpolation method for resizing image(s). One of
|
|
|
|
{'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
|
|
|
|
Defaults to 'LINEAR'.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of `target_size`.
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, target_sizes, interp='LINEAR'):
|
|
|
|
super(RandomResize, self).__init__()
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("`interp` should be one of {}.".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
self.interp = interp
|
|
|
|
assert isinstance(target_sizes, list), \
|
|
|
|
"`target_size` must be a list."
|
|
|
|
for i, item in enumerate(target_sizes):
|
|
|
|
if isinstance(item, int):
|
|
|
|
target_sizes[i] = (item, item)
|
|
|
|
self.target_size = target_sizes
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
height, width = random.choice(self.target_size)
|
|
|
|
resizer = Resize((height, width), interp=self.interp)
|
|
|
|
sample = resizer(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ResizeByShort(Transform):
|
|
|
|
"""
|
|
|
|
Resize input while keeping the aspect ratio.
|
|
|
|
|
|
|
|
Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
short_size (int): Target size of the shorter side of the image(s).
|
|
|
|
max_size (int, optional): Upper bound of longer side of the image(s). If
|
|
|
|
`max_size` is -1, no upper bound will be applied. Defaults to -1.
|
|
|
|
interp (str, optional): Interpolation method for resizing image(s). One of
|
|
|
|
{'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
|
|
|
|
Defaults to 'LINEAR'.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("`interp` should be one of {}".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
super(ResizeByShort, self).__init__()
|
|
|
|
self.short_size = short_size
|
|
|
|
self.max_size = max_size
|
|
|
|
self.interp = interp
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
im_short_size = min(im_h, im_w)
|
|
|
|
im_long_size = max(im_h, im_w)
|
|
|
|
scale = float(self.short_size) / float(im_short_size)
|
|
|
|
if 0 < self.max_size < np.round(scale * im_long_size):
|
|
|
|
scale = float(self.max_size) / float(im_long_size)
|
|
|
|
target_w = int(round(im_w * scale))
|
|
|
|
target_h = int(round(im_h * scale))
|
|
|
|
sample = Resize(
|
|
|
|
target_size=(target_h, target_w), interp=self.interp)(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomResizeByShort(Transform):
|
|
|
|
"""
|
|
|
|
Resize input to random sizes while keeping the aspect ratio.
|
|
|
|
|
|
|
|
Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
short_sizes (list[int]): Target size of the shorter side of the image(s).
|
|
|
|
max_size (int, optional): Upper bound of longer side of the image(s).
|
|
|
|
If `max_size` is -1, no upper bound will be applied. Defaults to -1.
|
|
|
|
interp (str, optional): Interpolation method for resizing image(s). One of
|
|
|
|
{'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
|
|
|
|
Defaults to 'LINEAR'.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of `target_size`.
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
ResizeByShort: Resize image(s) in input while keeping the aspect ratio.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
|
|
|
|
super(RandomResizeByShort, self).__init__()
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("`interp` should be one of {}".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
self.interp = interp
|
|
|
|
assert isinstance(short_sizes, list), \
|
|
|
|
"`short_sizes` must be a list."
|
|
|
|
|
|
|
|
self.short_sizes = short_sizes
|
|
|
|
self.max_size = max_size
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
short_size = random.choice(self.short_sizes)
|
|
|
|
resizer = ResizeByShort(
|
|
|
|
short_size=short_size, max_size=self.max_size, interp=self.interp)
|
|
|
|
sample = resizer(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ResizeByLong(Transform):
|
|
|
|
def __init__(self, long_size=256, interp='LINEAR'):
|
|
|
|
super(ResizeByLong, self).__init__()
|
|
|
|
self.long_size = long_size
|
|
|
|
self.interp = interp
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
im_long_size = max(im_h, im_w)
|
|
|
|
scale = float(self.long_size) / float(im_long_size)
|
|
|
|
target_h = int(round(im_h * scale))
|
|
|
|
target_w = int(round(im_w * scale))
|
|
|
|
sample = Resize(
|
|
|
|
target_size=(target_h, target_w), interp=self.interp)(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomFlipOrRotate(Transform):
|
|
|
|
"""
|
|
|
|
Flip or Rotate an image in different directions with a certain probability.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
probs (list[float]): Probabilities of performing flipping and rotation.
|
|
|
|
Default: [0.35,0.25].
|
|
|
|
probsf (list[float]): Probabilities of 5 flipping modes (horizontal,
|
|
|
|
vertical, both horizontal and vertical, diagonal, anti-diagonal).
|
|
|
|
Default: [0.3, 0.3, 0.2, 0.1, 0.1].
|
|
|
|
probsr (list[float]): Probabilities of 3 rotation modes (90°, 180°, 270°
|
|
|
|
clockwise). Default: [0.25, 0.5, 0.25].
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
from paddlers import transforms as T
|
|
|
|
|
|
|
|
# Define operators for data augmentation
|
|
|
|
train_transforms = T.Compose([
|
|
|
|
T.DecodeImg(),
|
|
|
|
T.RandomFlipOrRotate(
|
|
|
|
probs = [0.3, 0.2] # p=0.3 to flip the image,p=0.2 to rotate the image,p=0.5 to keep the image unchanged.
|
|
|
|
probsf = [0.3, 0.25, 0, 0, 0] # p=0.3 and p=0.25 to perform horizontal and vertical flipping; probility of no-flipping is 0.45.
|
|
|
|
probsr = [0, 0.65, 0]), # p=0.65 to rotate the image by 180°; probility of no-rotation is 0.35.
|
|
|
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
|
|
])
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
probs=[0.35, 0.25],
|
|
|
|
probsf=[0.3, 0.3, 0.2, 0.1, 0.1],
|
|
|
|
probsr=[0.25, 0.5, 0.25]):
|
|
|
|
super(RandomFlipOrRotate, self).__init__()
|
|
|
|
# Change various probabilities into probability intervals, to judge in which mode to flip or rotate
|
|
|
|
self.probs = [probs[0], probs[0] + probs[1]]
|
|
|
|
self.probsf = self.get_probs_range(probsf)
|
|
|
|
self.probsr = self.get_probs_range(probsr)
|
|
|
|
|
|
|
|
def apply_im(self, image, mode_id, flip_mode=True):
|
|
|
|
if flip_mode:
|
|
|
|
image = F.img_flip(image, mode_id)
|
|
|
|
else:
|
|
|
|
image = F.img_simple_rotate(image, mode_id)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask, mode_id, flip_mode=True):
|
|
|
|
if flip_mode:
|
|
|
|
mask = F.img_flip(mask, mode_id)
|
|
|
|
else:
|
|
|
|
mask = F.img_simple_rotate(mask, mode_id)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, mode_id, flip_mode=True):
|
|
|
|
raise TypeError(
|
|
|
|
"Currently, RandomFlipOrRotate is not available for object detection tasks."
|
|
|
|
)
|
|
|
|
|
|
|
|
def apply_segm(self, bbox, mode_id, flip_mode=True):
|
|
|
|
raise TypeError(
|
|
|
|
"Currently, RandomFlipOrRotate is not available for object detection tasks."
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_probs_range(self, probs):
|
|
|
|
"""
|
|
|
|
Change list of probabilities into cumulative probability intervals.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
probs (list[float]): Probabilities of different modes, shape: [n].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list[list]: Probability intervals, shape: [n, 2].
|
|
|
|
"""
|
|
|
|
|
|
|
|
ps = []
|
|
|
|
last_prob = 0
|
|
|
|
for prob in probs:
|
|
|
|
p_s = last_prob
|
|
|
|
cur_prob = prob / sum(probs)
|
|
|
|
last_prob += cur_prob
|
|
|
|
p_e = last_prob
|
|
|
|
ps.append([p_s, p_e])
|
|
|
|
return ps
|
|
|
|
|
|
|
|
def judge_probs_range(self, p, probs):
|
|
|
|
"""
|
|
|
|
Judge whether the value of `p` falls within the given probability interval.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
p (float): Value between 0 and 1.
|
|
|
|
probs (list[list]): Probability intervals, shape: [n, 2].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int: Interval where the input probability falls into.
|
|
|
|
"""
|
|
|
|
|
|
|
|
for id, id_range in enumerate(probs):
|
|
|
|
if p > id_range[0] and p < id_range[1]:
|
|
|
|
return id
|
|
|
|
return -1
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
p_m = random.random()
|
|
|
|
if p_m < self.probs[0]:
|
|
|
|
mode_p = random.random()
|
|
|
|
mode_id = self.judge_probs_range(mode_p, self.probsf)
|
|
|
|
sample['image'] = self.apply_im(sample['image'], mode_id, True)
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'], mode_id,
|
|
|
|
True)
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], mode_id, True)
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = [
|
|
|
|
self.apply_mask(aux_mask, mode_id, True)
|
|
|
|
for aux_mask in sample['aux_masks']
|
|
|
|
]
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], mode_id,
|
|
|
|
True)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], mode_id,
|
|
|
|
True)
|
|
|
|
if 'target' in sample:
|
|
|
|
sample['target'] = self.apply_im(sample['target'], mode_id,
|
|
|
|
True)
|
|
|
|
elif p_m < self.probs[1]:
|
|
|
|
mode_p = random.random()
|
|
|
|
mode_id = self.judge_probs_range(mode_p, self.probsr)
|
|
|
|
sample['image'] = self.apply_im(sample['image'], mode_id, False)
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'], mode_id,
|
|
|
|
False)
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], mode_id, False)
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = [
|
|
|
|
self.apply_mask(aux_mask, mode_id, False)
|
|
|
|
for aux_mask in sample['aux_masks']
|
|
|
|
]
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], mode_id,
|
|
|
|
False)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], mode_id,
|
|
|
|
False)
|
|
|
|
if 'target' in sample:
|
|
|
|
sample['target'] = self.apply_im(sample['target'], mode_id,
|
|
|
|
False)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomHorizontalFlip(Transform):
|
|
|
|
"""
|
|
|
|
Randomly flip the input horizontally.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prob (float, optional): Probability of flipping the input. Defaults to .5.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, prob=0.5):
|
|
|
|
super(RandomHorizontalFlip, self).__init__()
|
|
|
|
self.prob = prob
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = F.horizontal_flip(image)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
mask = F.horizontal_flip(mask)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, width):
|
|
|
|
oldx1 = bbox[:, 0].copy()
|
|
|
|
oldx2 = bbox[:, 2].copy()
|
|
|
|
bbox[:, 0] = width - oldx2
|
|
|
|
bbox[:, 2] = width - oldx1
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
def apply_segm(self, segms, height, width):
|
|
|
|
flipped_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if F.is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
flipped_segms.append(
|
|
|
|
[F.horizontal_flip_poly(poly, width) for poly in segm])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
flipped_segms.append(F.horizontal_flip_rle(segm, height, width))
|
|
|
|
return flipped_segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if random.random() < self.prob:
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(self.apply_mask, sample['aux_masks']))
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
|
|
|
|
im_w)
|
|
|
|
if 'target' in sample:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomVerticalFlip(Transform):
|
|
|
|
"""
|
|
|
|
Randomly flip the input vertically.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prob (float, optional): Probability of flipping the input. Defaults to .5.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, prob=0.5):
|
|
|
|
super(RandomVerticalFlip, self).__init__()
|
|
|
|
self.prob = prob
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = F.vertical_flip(image)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
mask = F.vertical_flip(mask)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, height):
|
|
|
|
oldy1 = bbox[:, 1].copy()
|
|
|
|
oldy2 = bbox[:, 3].copy()
|
|
|
|
bbox[:, 0] = height - oldy2
|
|
|
|
bbox[:, 2] = height - oldy1
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
def apply_segm(self, segms, height, width):
|
|
|
|
flipped_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if F.is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
flipped_segms.append(
|
|
|
|
[F.vertical_flip_poly(poly, height) for poly in segm])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
flipped_segms.append(F.vertical_flip_rle(segm, height, width))
|
|
|
|
return flipped_segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if random.random() < self.prob:
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(self.apply_mask, sample['aux_masks']))
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
|
|
|
|
im_w)
|
|
|
|
if 'target' in sample:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Normalize(Transform):
|
|
|
|
"""
|
|
|
|
Apply normalization to the input image(s). The normalization steps are:
|
|
|
|
1. im = (im - min_value) * 1 / (max_value - min_value)
|
|
|
|
2. im = im - mean
|
|
|
|
3. im = im / std
|
|
|
|
|
|
|
|
Args:
|
|
|
|
mean (list[float] | tuple[float], optional): Mean of input image(s).
|
|
|
|
Defaults to [0.485, 0.456, 0.406].
|
|
|
|
std (list[float] | tuple[float], optional): Standard deviation of input
|
|
|
|
image(s). Defaults to [0.229, 0.224, 0.225].
|
|
|
|
min_val (list[float] | tuple[float], optional): Minimum value of input
|
|
|
|
image(s). If None, use 0 for all channels. Defaults to None.
|
|
|
|
max_val (list[float] | tuple[float], optional): Maximum value of input
|
|
|
|
image(s). If None, use 255. for all channels. Defaults to None.
|
|
|
|
apply_to_tar (bool, optional): Whether to apply transformation to the target
|
|
|
|
image. Defaults to True.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
mean=[0.485, 0.456, 0.406],
|
|
|
|
std=[0.229, 0.224, 0.225],
|
|
|
|
min_val=None,
|
|
|
|
max_val=None,
|
|
|
|
apply_to_tar=True):
|
|
|
|
super(Normalize, self).__init__()
|
|
|
|
channel = len(mean)
|
|
|
|
if min_val is None:
|
|
|
|
min_val = [0] * channel
|
|
|
|
if max_val is None:
|
|
|
|
max_val = [255.] * channel
|
|
|
|
|
|
|
|
from functools import reduce
|
|
|
|
if reduce(lambda x, y: x * y, std) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"`std` should not contain 0, but received is {}.".format(std))
|
|
|
|
if reduce(lambda x, y: x * y,
|
|
|
|
[a - b for a, b in zip(max_val, min_val)]) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"(`max_val` - `min_val`) should not contain 0, but received is {}.".
|
|
|
|
format((np.asarray(max_val) - np.asarray(min_val)).tolist()))
|
|
|
|
|
|
|
|
self.mean = mean
|
|
|
|
self.std = std
|
|
|
|
self.min_val = min_val
|
|
|
|
self.max_val = max_val
|
|
|
|
self.apply_to_tar = apply_to_tar
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
mean = np.asarray(
|
|
|
|
self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
|
|
|
|
std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
|
|
|
|
image = F.normalize(image, mean, std, self.min_val, self.max_val)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
if 'target' in sample and self.apply_to_tar:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class CenterCrop(Transform):
|
|
|
|
"""
|
|
|
|
Crop the input image(s) at the center.
|
|
|
|
1. Locate the center of the image.
|
|
|
|
2. Crop the image.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
crop_size (int, optional): Target size of the cropped image(s).
|
|
|
|
Defaults to 224.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, crop_size=224):
|
|
|
|
super(CenterCrop, self).__init__()
|
|
|
|
self.crop_size = crop_size
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = F.center_crop(image, self.crop_size)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
mask = F.center_crop(mask, self.crop_size)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(self.apply_mask, sample['aux_masks']))
|
|
|
|
if 'target' in sample:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomCrop(Transform):
|
|
|
|
"""
|
|
|
|
Randomly crop the input.
|
|
|
|
1. Compute the height and width of cropped area according to `aspect_ratio` and
|
|
|
|
`scaling`.
|
|
|
|
2. Locate the upper left corner of cropped area randomly.
|
|
|
|
3. Crop the image(s).
|
|
|
|
4. Resize the cropped area to `crop_size` x `crop_size`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
crop_size (int | list[int] | tuple[int]): Target size of the cropped area. If
|
|
|
|
None, the cropped area will not be resized. Defaults to None.
|
|
|
|
aspect_ratio (list[float], optional): Aspect ratio of cropped region in
|
|
|
|
[min, max] format. Defaults to [.5, 2.].
|
|
|
|
thresholds (list[float], optional): Iou thresholds to decide a valid bbox
|
|
|
|
crop. Defaults to [.0, .1, .3, .5, .7, .9].
|
|
|
|
scaling (list[float], optional): Ratio between the cropped region and the
|
|
|
|
original image in [min, max] format. Defaults to [.3, 1.].
|
|
|
|
num_attempts (int, optional): Max number of tries before giving up.
|
|
|
|
Defaults to 50.
|
|
|
|
allow_no_crop (bool, optional): Whether returning without doing crop is
|
|
|
|
allowed. Defaults to True.
|
|
|
|
cover_all_box (bool, optional): Whether to ensure all bboxes be covered in
|
|
|
|
the final crop. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
crop_size=None,
|
|
|
|
aspect_ratio=[.5, 2.],
|
|
|
|
thresholds=[.0, .1, .3, .5, .7, .9],
|
|
|
|
scaling=[.3, 1.],
|
|
|
|
num_attempts=50,
|
|
|
|
allow_no_crop=True,
|
|
|
|
cover_all_box=False):
|
|
|
|
super(RandomCrop, self).__init__()
|
|
|
|
self.crop_size = crop_size
|
|
|
|
self.aspect_ratio = aspect_ratio
|
|
|
|
self.thresholds = thresholds
|
|
|
|
self.scaling = scaling
|
|
|
|
self.num_attempts = num_attempts
|
|
|
|
self.allow_no_crop = allow_no_crop
|
|
|
|
self.cover_all_box = cover_all_box
|
|
|
|
|
|
|
|
def _generate_crop_info(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
thresholds = self.thresholds
|
|
|
|
if self.allow_no_crop:
|
|
|
|
thresholds.append('no_crop')
|
|
|
|
np.random.shuffle(thresholds)
|
|
|
|
for thresh in thresholds:
|
|
|
|
if thresh == 'no_crop':
|
|
|
|
return None
|
|
|
|
for i in range(self.num_attempts):
|
|
|
|
crop_box = self._get_crop_box(im_h, im_w)
|
|
|
|
if crop_box is None:
|
|
|
|
continue
|
|
|
|
iou = self._iou_matrix(
|
|
|
|
sample['gt_bbox'],
|
|
|
|
np.array(
|
|
|
|
[crop_box], dtype=np.float32))
|
|
|
|
if iou.max() < thresh:
|
|
|
|
continue
|
|
|
|
if self.cover_all_box and iou.min() < thresh:
|
|
|
|
continue
|
|
|
|
cropped_box, valid_ids = self._crop_box_with_center_constraint(
|
|
|
|
sample['gt_bbox'], np.array(
|
|
|
|
crop_box, dtype=np.float32))
|
|
|
|
if valid_ids.size > 0:
|
|
|
|
return crop_box, cropped_box, valid_ids
|
|
|
|
else:
|
|
|
|
for i in range(self.num_attempts):
|
|
|
|
crop_box = self._get_crop_box(im_h, im_w)
|
|
|
|
if crop_box is None:
|
|
|
|
continue
|
|
|
|
return crop_box, None, None
|
|
|
|
return None
|
|
|
|
|
|
|
|
def _get_crop_box(self, im_h, im_w):
|
|
|
|
scale = np.random.uniform(*self.scaling)
|
|
|
|
if self.aspect_ratio is not None:
|
|
|
|
min_ar, max_ar = self.aspect_ratio
|
|
|
|
aspect_ratio = np.random.uniform(
|
|
|
|
max(min_ar, scale**2), min(max_ar, scale**-2))
|
|
|
|
h_scale = scale / np.sqrt(aspect_ratio)
|
|
|
|
w_scale = scale * np.sqrt(aspect_ratio)
|
|
|
|
else:
|
|
|
|
h_scale = np.random.uniform(*self.scaling)
|
|
|
|
w_scale = np.random.uniform(*self.scaling)
|
|
|
|
crop_h = im_h * h_scale
|
|
|
|
crop_w = im_w * w_scale
|
|
|
|
if self.aspect_ratio is None:
|
|
|
|
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
|
|
|
|
return None
|
|
|
|
crop_h = int(crop_h)
|
|
|
|
crop_w = int(crop_w)
|
|
|
|
crop_y = np.random.randint(0, im_h - crop_h)
|
|
|
|
crop_x = np.random.randint(0, im_w - crop_w)
|
|
|
|
return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
|
|
|
|
|
|
|
|
def _iou_matrix(self, a, b):
|
|
|
|
tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
|
|
|
br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
|
|
|
|
|
|
|
area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
|
|
|
|
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
|
|
|
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
|
|
|
|
area_o = (area_a[:, np.newaxis] + area_b - area_i)
|
|
|
|
return area_i / (area_o + 1e-10)
|
|
|
|
|
|
|
|
def _crop_box_with_center_constraint(self, box, crop):
|
|
|
|
cropped_box = box.copy()
|
|
|
|
|
|
|
|
cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
|
|
|
|
cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
|
|
|
|
cropped_box[:, :2] -= crop[:2]
|
|
|
|
cropped_box[:, 2:] -= crop[:2]
|
|
|
|
|
|
|
|
centers = (box[:, :2] + box[:, 2:]) / 2
|
|
|
|
valid = np.logical_and(crop[:2] <= centers,
|
|
|
|
centers < crop[2:]).all(axis=1)
|
|
|
|
valid = np.logical_and(
|
|
|
|
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
|
|
|
|
|
|
|
|
return cropped_box, np.where(valid)[0]
|
|
|
|
|
|
|
|
def _crop_segm(self, segms, valid_ids, crop, height, width):
|
|
|
|
crop_segms = []
|
|
|
|
for id in valid_ids:
|
|
|
|
segm = segms[id]
|
|
|
|
if F.is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
crop_segms.append(F.crop_poly(segm, crop))
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
crop_segms.append(F.crop_rle(segm, crop, height, width))
|
|
|
|
|
|
|
|
return crop_segms
|
|
|
|
|
|
|
|
def apply_im(self, image, crop):
|
|
|
|
x1, y1, x2, y2 = crop
|
|
|
|
return image[y1:y2, x1:x2, :]
|
|
|
|
|
|
|
|
def apply_mask(self, mask, crop):
|
|
|
|
x1, y1, x2, y2 = crop
|
|
|
|
return mask[y1:y2, x1:x2, ...]
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
crop_info = self._generate_crop_info(sample)
|
|
|
|
if crop_info is not None:
|
|
|
|
crop_box, cropped_box, valid_ids = crop_info
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
sample['image'] = self.apply_im(sample['image'], crop_box)
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'], crop_box)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
crop_polys = self._crop_segm(
|
|
|
|
sample['gt_poly'],
|
|
|
|
valid_ids,
|
|
|
|
np.array(
|
|
|
|
crop_box, dtype=np.int64),
|
|
|
|
im_h,
|
|
|
|
im_w)
|
|
|
|
if [] in crop_polys:
|
|
|
|
delete_id = list()
|
|
|
|
valid_polys = list()
|
|
|
|
for idx, poly in enumerate(crop_polys):
|
|
|
|
if not poly:
|
|
|
|
delete_id.append(idx)
|
|
|
|
else:
|
|
|
|
valid_polys.append(poly)
|
|
|
|
valid_ids = np.delete(valid_ids, delete_id)
|
|
|
|
if not valid_polys:
|
|
|
|
return sample
|
|
|
|
sample['gt_poly'] = valid_polys
|
|
|
|
else:
|
|
|
|
sample['gt_poly'] = crop_polys
|
|
|
|
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
|
|
|
|
sample['gt_class'] = np.take(
|
|
|
|
sample['gt_class'], valid_ids, axis=0)
|
|
|
|
if 'gt_score' in sample:
|
|
|
|
sample['gt_score'] = np.take(
|
|
|
|
sample['gt_score'], valid_ids, axis=0)
|
|
|
|
if 'is_crowd' in sample:
|
|
|
|
sample['is_crowd'] = np.take(
|
|
|
|
sample['is_crowd'], valid_ids, axis=0)
|
|
|
|
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], crop_box)
|
|
|
|
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(partial(
|
|
|
|
self.apply_mask, crop=crop_box),
|
|
|
|
sample['aux_masks']))
|
|
|
|
|
|
|
|
if 'target' in sample:
|
|
|
|
if 'sr_factor' in sample:
|
|
|
|
sample['target'] = self.apply_im(
|
|
|
|
sample['target'],
|
|
|
|
F.calc_hr_shape(crop_box, sample['sr_factor']))
|
|
|
|
else:
|
|
|
|
sample['target'] = self.apply_im(sample['image'], crop_box)
|
|
|
|
|
|
|
|
if self.crop_size is not None:
|
|
|
|
sample = Resize(self.crop_size)(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomScaleAspect(Transform):
|
|
|
|
"""
|
|
|
|
Crop input image(s) and resize back to original sizes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
min_scale (float): Minimum ratio between the cropped region and the original
|
|
|
|
image. If 0, image(s) will not be cropped. Defaults to .5.
|
|
|
|
aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, min_scale=0.5, aspect_ratio=0.33):
|
|
|
|
super(RandomScaleAspect, self).__init__()
|
|
|
|
self.min_scale = min_scale
|
|
|
|
self.aspect_ratio = aspect_ratio
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.min_scale != 0 and self.aspect_ratio != 0:
|
|
|
|
img_height, img_width = sample['image'].shape[:2]
|
|
|
|
sample = RandomCrop(
|
|
|
|
crop_size=(img_height, img_width),
|
|
|
|
aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio],
|
|
|
|
scaling=[self.min_scale, 1.],
|
|
|
|
num_attempts=10,
|
|
|
|
allow_no_crop=False)(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomExpand(Transform):
|
|
|
|
"""
|
|
|
|
Randomly expand the input by padding according to random offsets.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
upper_ratio (float, optional): Maximum ratio to which the original image
|
|
|
|
is expanded. Defaults to 4..
|
|
|
|
prob (float, optional): Probability of apply expanding. Defaults to .5.
|
|
|
|
im_padding_value (list[float] | tuple[float], optional): RGB filling value
|
|
|
|
for the image. Defaults to (127.5, 127.5, 127.5).
|
|
|
|
label_padding_value (int, optional): Filling value for the mask.
|
|
|
|
Defaults to 255.
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
paddlers.transforms.Pad
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
upper_ratio=4.,
|
|
|
|
prob=.5,
|
|
|
|
im_padding_value=127.5,
|
|
|
|
label_padding_value=255):
|
|
|
|
super(RandomExpand, self).__init__()
|
|
|
|
assert upper_ratio > 1.01, "`upper_ratio` must be larger than 1.01."
|
|
|
|
self.upper_ratio = upper_ratio
|
|
|
|
self.prob = prob
|
|
|
|
assert isinstance(im_padding_value, (Number, Sequence)), \
|
|
|
|
"Value to fill must be either float or sequence."
|
|
|
|
self.im_padding_value = im_padding_value
|
|
|
|
self.label_padding_value = label_padding_value
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if random.random() < self.prob:
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
ratio = np.random.uniform(1., self.upper_ratio)
|
|
|
|
h = int(im_h * ratio)
|
|
|
|
w = int(im_w * ratio)
|
|
|
|
if h > im_h and w > im_w:
|
|
|
|
y = np.random.randint(0, h - im_h)
|
|
|
|
x = np.random.randint(0, w - im_w)
|
|
|
|
target_size = (h, w)
|
|
|
|
offsets = (x, y)
|
|
|
|
sample = Pad(
|
|
|
|
target_size=target_size,
|
|
|
|
pad_mode=-1,
|
|
|
|
offsets=offsets,
|
|
|
|
im_padding_value=self.im_padding_value,
|
|
|
|
label_padding_value=self.label_padding_value)(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Pad(Transform):
|
|
|
|
def __init__(self,
|
|
|
|
target_size=None,
|
|
|
|
pad_mode=0,
|
|
|
|
offsets=None,
|
|
|
|
im_padding_value=127.5,
|
|
|
|
label_padding_value=255,
|
|
|
|
size_divisor=32):
|
|
|
|
"""
|
|
|
|
Pad image to a specified size or multiple of `size_divisor`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target_size (list[int] | tuple[int], optional): Image target size, if None, pad to
|
|
|
|
multiple of size_divisor. Defaults to None.
|
|
|
|
pad_mode (int, optional): Pad mode. Currently only four modes are supported:
|
|
|
|
[-1, 0, 1, 2]. if -1, use specified offsets. If 0, only pad to right and bottom
|
|
|
|
If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
|
|
|
|
offsets (list[int]|None, optional): Padding offsets. Defaults to None.
|
|
|
|
im_padding_value (list[float] | tuple[float]): RGB value of padded area.
|
|
|
|
Defaults to (127.5, 127.5, 127.5).
|
|
|
|
label_padding_value (int, optional): Filling value for the mask.
|
|
|
|
Defaults to 255.
|
|
|
|
size_divisor (int): Image width and height after padding will be a multiple of
|
|
|
|
`size_divisor`.
|
|
|
|
"""
|
|
|
|
super(Pad, self).__init__()
|
|
|
|
if isinstance(target_size, (list, tuple)):
|
|
|
|
if len(target_size) != 2:
|
|
|
|
raise ValueError(
|
|
|
|
"`target_size` should contain 2 elements, but it is {}.".
|
|
|
|
format(target_size))
|
|
|
|
if isinstance(target_size, int):
|
|
|
|
target_size = [target_size] * 2
|
|
|
|
|
|
|
|
assert pad_mode in [
|
|
|
|
-1, 0, 1, 2
|
|
|
|
], "Currently only four modes are supported: [-1, 0, 1, 2]."
|
|
|
|
if pad_mode == -1:
|
|
|
|
assert offsets, "if `pad_mode` is -1, `offsets` should not be None."
|
|
|
|
|
|
|
|
self.target_size = target_size
|
|
|
|
self.size_divisor = size_divisor
|
|
|
|
self.pad_mode = pad_mode
|
|
|
|
self.offsets = offsets
|
|
|
|
self.im_padding_value = im_padding_value
|
|
|
|
self.label_padding_value = label_padding_value
|
|
|
|
|
|
|
|
def apply_im(self, image, offsets, target_size):
|
|
|
|
x, y = offsets
|
|
|
|
h, w = target_size
|
|
|
|
im_h, im_w, channel = image.shape[:3]
|
|
|
|
canvas = np.ones((h, w, channel), dtype=np.float32)
|
|
|
|
canvas *= np.array(self.im_padding_value, dtype=np.float32)
|
|
|
|
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
|
|
|
|
return canvas
|
|
|
|
|
|
|
|
def apply_mask(self, mask, offsets, target_size):
|
|
|
|
x, y = offsets
|
|
|
|
im_h, im_w = mask.shape[:2]
|
|
|
|
h, w = target_size
|
|
|
|
canvas = np.ones((h, w), dtype=np.float32)
|
|
|
|
canvas *= np.array(self.label_padding_value, dtype=np.float32)
|
|
|
|
canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
|
|
|
|
return canvas
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, offsets):
|
|
|
|
return bbox + np.array(offsets * 2, dtype=np.float32)
|
|
|
|
|
|
|
|
def apply_segm(self, segms, offsets, im_size, size):
|
|
|
|
x, y = offsets
|
|
|
|
height, width = im_size
|
|
|
|
h, w = size
|
|
|
|
expanded_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if F.is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
expanded_segms.append(
|
|
|
|
[F.expand_poly(poly, x, y) for poly in segm])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
expanded_segms.append(
|
|
|
|
F.expand_rle(segm, x, y, height, width, h, w))
|
|
|
|
return expanded_segms
|
|
|
|
|
|
|
|
def _get_offsets(self, im_h, im_w, h, w):
|
|
|
|
if self.pad_mode == -1:
|
|
|
|
offsets = self.offsets
|
|
|
|
elif self.pad_mode == 0:
|
|
|
|
offsets = [0, 0]
|
|
|
|
elif self.pad_mode == 1:
|
|
|
|
offsets = [(w - im_w) // 2, (h - im_h) // 2]
|
|
|
|
else:
|
|
|
|
offsets = [w - im_w, h - im_h]
|
|
|
|
return offsets
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
if self.target_size:
|
|
|
|
h, w = self.target_size
|
|
|
|
assert (
|
|
|
|
im_h <= h and im_w <= w
|
|
|
|
), 'target size ({}, {}) cannot be less than image size ({}, {})'\
|
|
|
|
.format(h, w, im_h, im_w)
|
|
|
|
else:
|
|
|
|
h = (np.ceil(im_h / self.size_divisor) *
|
|
|
|
self.size_divisor).astype(int)
|
|
|
|
w = (np.ceil(im_w / self.size_divisor) *
|
|
|
|
self.size_divisor).astype(int)
|
|
|
|
|
|
|
|
if h == im_h and w == im_w:
|
|
|
|
return sample
|
|
|
|
|
|
|
|
offsets = self._get_offsets(im_h, im_w, h, w)
|
|
|
|
|
|
|
|
sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'], offsets, (h, w))
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(partial(
|
|
|
|
self.apply_mask, offsets=offsets, target_size=(h, w)),
|
|
|
|
sample['aux_masks']))
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(
|
|
|
|
sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
|
|
|
|
if 'target' in sample:
|
|
|
|
if 'sr_factor' in sample:
|
|
|
|
hr_shape = F.calc_hr_shape((h, w), sample['sr_factor'])
|
|
|
|
hr_offsets = self._get_offsets(*sample['target'].shape[:2],
|
|
|
|
*hr_shape)
|
|
|
|
sample['target'] = self.apply_im(sample['target'], hr_offsets,
|
|
|
|
hr_shape)
|
|
|
|
else:
|
|
|
|
sample['target'] = self.apply_im(sample['target'], offsets,
|
|
|
|
(h, w))
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class MixupImage(Transform):
|
|
|
|
def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
|
|
|
|
"""
|
|
|
|
Mixup two images and their gt_bbbox/gt_score.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
alpha (float, optional): Alpha parameter of beta distribution.
|
|
|
|
Defaults to 1.5.
|
|
|
|
beta (float, optional): Beta parameter of beta distribution.
|
|
|
|
Defaults to 1.5.
|
|
|
|
"""
|
|
|
|
super(MixupImage, self).__init__()
|
|
|
|
if alpha <= 0.0:
|
|
|
|
raise ValueError("`alpha` should be positive in MixupImage.")
|
|
|
|
if beta <= 0.0:
|
|
|
|
raise ValueError("`beta` should be positive in MixupImage.")
|
|
|
|
self.alpha = alpha
|
|
|
|
self.beta = beta
|
|
|
|
self.mixup_epoch = mixup_epoch
|
|
|
|
|
|
|
|
def apply_im(self, image1, image2, factor):
|
|
|
|
h = max(image1.shape[0], image2.shape[0])
|
|
|
|
w = max(image1.shape[1], image2.shape[1])
|
|
|
|
img = np.zeros((h, w, image1.shape[2]), 'float32')
|
|
|
|
img[:image1.shape[0], :image1.shape[1], :] = \
|
|
|
|
image1.astype('float32') * factor
|
|
|
|
img[:image2.shape[0], :image2.shape[1], :] += \
|
|
|
|
image2.astype('float32') * (1.0 - factor)
|
|
|
|
return img.astype('uint8')
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
if not isinstance(sample, Sequence):
|
|
|
|
return sample
|
|
|
|
|
|
|
|
assert len(sample) == 2, 'mixup need two samples'
|
|
|
|
|
|
|
|
factor = np.random.beta(self.alpha, self.beta)
|
|
|
|
factor = max(0.0, min(1.0, factor))
|
|
|
|
if factor >= 1.0:
|
|
|
|
return sample[0]
|
|
|
|
if factor <= 0.0:
|
|
|
|
return sample[1]
|
|
|
|
image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
|
|
|
|
result = copy.deepcopy(sample[0])
|
|
|
|
result['image'] = image
|
|
|
|
# Apply bbox and score
|
|
|
|
if 'gt_bbox' in sample[0]:
|
|
|
|
gt_bbox1 = sample[0]['gt_bbox']
|
|
|
|
gt_bbox2 = sample[1]['gt_bbox']
|
|
|
|
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
|
|
|
|
result['gt_bbox'] = gt_bbox
|
|
|
|
if 'gt_poly' in sample[0]:
|
|
|
|
gt_poly1 = sample[0]['gt_poly']
|
|
|
|
gt_poly2 = sample[1]['gt_poly']
|
|
|
|
gt_poly = gt_poly1 + gt_poly2
|
|
|
|
result['gt_poly'] = gt_poly
|
|
|
|
if 'gt_class' in sample[0]:
|
|
|
|
gt_class1 = sample[0]['gt_class']
|
|
|
|
gt_class2 = sample[1]['gt_class']
|
|
|
|
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
|
|
|
|
result['gt_class'] = gt_class
|
|
|
|
|
|
|
|
gt_score1 = np.ones_like(sample[0]['gt_class'])
|
|
|
|
gt_score2 = np.ones_like(sample[1]['gt_class'])
|
|
|
|
gt_score = np.concatenate(
|
|
|
|
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
|
|
|
|
result['gt_score'] = gt_score
|
|
|
|
if 'is_crowd' in sample[0]:
|
|
|
|
is_crowd1 = sample[0]['is_crowd']
|
|
|
|
is_crowd2 = sample[1]['is_crowd']
|
|
|
|
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
|
|
|
|
result['is_crowd'] = is_crowd
|
|
|
|
if 'difficult' in sample[0]:
|
|
|
|
is_difficult1 = sample[0]['difficult']
|
|
|
|
is_difficult2 = sample[1]['difficult']
|
|
|
|
is_difficult = np.concatenate(
|
|
|
|
(is_difficult1, is_difficult2), axis=0)
|
|
|
|
result['difficult'] = is_difficult
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
class RandomDistort(Transform):
|
|
|
|
"""
|
|
|
|
Random color distortion.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
brightness_range (float, optional): Range of brightness distortion.
|
|
|
|
Defaults to .5.
|
|
|
|
brightness_prob (float, optional): Probability of brightness distortion.
|
|
|
|
Defaults to .5.
|
|
|
|
contrast_range (float, optional): Range of contrast distortion.
|
|
|
|
Defaults to .5.
|
|
|
|
contrast_prob (float, optional): Probability of contrast distortion.
|
|
|
|
Defaults to .5.
|
|
|
|
saturation_range (float, optional): Range of saturation distortion.
|
|
|
|
Defaults to .5.
|
|
|
|
saturation_prob (float, optional): Probability of saturation distortion.
|
|
|
|
Defaults to .5.
|
|
|
|
hue_range (float, optional): Range of hue distortion. Defaults to .5.
|
|
|
|
hue_prob (float, optional): Probability of hue distortion. Defaults to .5.
|
|
|
|
random_apply (bool, optional): Apply the transformation in random (yolo) or
|
|
|
|
fixed (SSD) order. Defaults to True.
|
|
|
|
count (int, optional): Number of distortions to apply. Defaults to 4.
|
|
|
|
shuffle_channel (bool, optional): Whether to swap channels randomly.
|
|
|
|
Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
brightness_range=0.5,
|
|
|
|
brightness_prob=0.5,
|
|
|
|
contrast_range=0.5,
|
|
|
|
contrast_prob=0.5,
|
|
|
|
saturation_range=0.5,
|
|
|
|
saturation_prob=0.5,
|
|
|
|
hue_range=18,
|
|
|
|
hue_prob=0.5,
|
|
|
|
random_apply=True,
|
|
|
|
count=4,
|
|
|
|
shuffle_channel=False):
|
|
|
|
super(RandomDistort, self).__init__()
|
|
|
|
self.brightness_range = [1 - brightness_range, 1 + brightness_range]
|
|
|
|
self.brightness_prob = brightness_prob
|
|
|
|
self.contrast_range = [1 - contrast_range, 1 + contrast_range]
|
|
|
|
self.contrast_prob = contrast_prob
|
|
|
|
self.saturation_range = [1 - saturation_range, 1 + saturation_range]
|
|
|
|
self.saturation_prob = saturation_prob
|
|
|
|
self.hue_range = [1 - hue_range, 1 + hue_range]
|
|
|
|
self.hue_prob = hue_prob
|
|
|
|
self.random_apply = random_apply
|
|
|
|
self.count = count
|
|
|
|
self.shuffle_channel = shuffle_channel
|
|
|
|
|
|
|
|
def apply_hue(self, image):
|
|
|
|
low, high = self.hue_range
|
|
|
|
if np.random.uniform(0., 1.) < self.hue_prob:
|
|
|
|
return image
|
|
|
|
|
|
|
|
# It works, but the result differs from HSV version.
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
u = np.cos(delta * np.pi)
|
|
|
|
w = np.sin(delta * np.pi)
|
|
|
|
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
|
|
|
|
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
|
|
|
|
[0.211, -0.523, 0.311]])
|
|
|
|
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
|
|
|
|
[1.0, -1.107, 1.705]])
|
|
|
|
t = np.dot(np.dot(ityiq, bt), tyiq).T
|
|
|
|
|
|
|
|
res_list = []
|
|
|
|
channel = image.shape[2]
|
|
|
|
for i in range(channel // 3):
|
|
|
|
sub_img = image[:, :, 3 * i:3 * (i + 1)]
|
|
|
|
sub_img = sub_img.astype(np.float32)
|
|
|
|
sub_img = np.dot(image, t)
|
|
|
|
res_list.append(sub_img)
|
|
|
|
|
|
|
|
if channel % 3 != 0:
|
|
|
|
i = channel % 3
|
|
|
|
res_list.append(image[:, :, -i:])
|
|
|
|
|
|
|
|
return np.concatenate(res_list, axis=2)
|
|
|
|
|
|
|
|
def apply_saturation(self, image):
|
|
|
|
low, high = self.saturation_range
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
if np.random.uniform(0., 1.) < self.saturation_prob:
|
|
|
|
return image
|
|
|
|
|
|
|
|
res_list = []
|
|
|
|
channel = image.shape[2]
|
|
|
|
for i in range(channel // 3):
|
|
|
|
sub_img = image[:, :, 3 * i:3 * (i + 1)]
|
|
|
|
sub_img = sub_img.astype(np.float32)
|
|
|
|
# It works, but the result differs from HSV version.
|
|
|
|
gray = sub_img * np.array(
|
|
|
|
[[[0.299, 0.587, 0.114]]], dtype=np.float32)
|
|
|
|
gray = gray.sum(axis=2, keepdims=True)
|
|
|
|
gray *= (1.0 - delta)
|
|
|
|
sub_img *= delta
|
|
|
|
sub_img += gray
|
|
|
|
res_list.append(sub_img)
|
|
|
|
|
|
|
|
if channel % 3 != 0:
|
|
|
|
i = channel % 3
|
|
|
|
res_list.append(image[:, :, -i:])
|
|
|
|
|
|
|
|
return np.concatenate(res_list, axis=2)
|
|
|
|
|
|
|
|
def apply_contrast(self, image):
|
|
|
|
low, high = self.contrast_range
|
|
|
|
if np.random.uniform(0., 1.) < self.contrast_prob:
|
|
|
|
return image
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
image *= delta
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_brightness(self, image):
|
|
|
|
low, high = self.brightness_range
|
|
|
|
if np.random.uniform(0., 1.) < self.brightness_prob:
|
|
|
|
return image
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
image += delta
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.random_apply:
|
|
|
|
functions = [
|
|
|
|
self.apply_brightness, self.apply_contrast,
|
|
|
|
self.apply_saturation, self.apply_hue
|
|
|
|
]
|
|
|
|
distortions = np.random.permutation(functions)[:self.count]
|
|
|
|
for func in distortions:
|
|
|
|
sample['image'] = func(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = func(sample['image2'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
sample['image'] = self.apply_brightness(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_brightness(sample['image2'])
|
|
|
|
mode = np.random.randint(0, 2)
|
|
|
|
if mode:
|
|
|
|
sample['image'] = self.apply_contrast(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_contrast(sample['image2'])
|
|
|
|
sample['image'] = self.apply_saturation(sample['image'])
|
|
|
|
sample['image'] = self.apply_hue(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_saturation(sample['image2'])
|
|
|
|
sample['image2'] = self.apply_hue(sample['image2'])
|
|
|
|
if not mode:
|
|
|
|
sample['image'] = self.apply_contrast(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_contrast(sample['image2'])
|
|
|
|
|
|
|
|
if self.shuffle_channel:
|
|
|
|
if np.random.randint(0, 2):
|
|
|
|
sample['image'] = sample['image'][..., np.random.permutation(3)]
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = sample['image2'][
|
|
|
|
..., np.random.permutation(3)]
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomBlur(Transform):
|
|
|
|
"""
|
|
|
|
Randomly blur input image(s).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prob (float): Probability of blurring.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, prob=0.1):
|
|
|
|
super(RandomBlur, self).__init__()
|
|
|
|
self.prob = prob
|
|
|
|
|
|
|
|
def apply_im(self, image, radius):
|
|
|
|
image = cv2.GaussianBlur(image, (radius, radius), 0, 0)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.prob <= 0:
|
|
|
|
n = 0
|
|
|
|
elif self.prob >= 1:
|
|
|
|
n = 1
|
|
|
|
else:
|
|
|
|
n = int(1.0 / self.prob)
|
|
|
|
if n > 0:
|
|
|
|
if np.random.randint(0, n) == 0:
|
|
|
|
radius = np.random.randint(3, 10)
|
|
|
|
if radius % 2 != 1:
|
|
|
|
radius = radius + 1
|
|
|
|
if radius > 9:
|
|
|
|
radius = 9
|
|
|
|
sample['image'] = self.apply_im(sample['image'], radius)
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'], radius)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Dehaze(Transform):
|
|
|
|
"""
|
|
|
|
Dehaze input image(s).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
gamma (bool, optional): Use gamma correction or not. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, gamma=False):
|
|
|
|
super(Dehaze, self).__init__()
|
|
|
|
self.gamma = gamma
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = F.dehaze(image, self.gamma)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ReduceDim(Transform):
|
|
|
|
"""
|
|
|
|
Use PCA to reduce the dimension of input image(s).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
joblib_path (str): Path of *.joblib file of PCA.
|
|
|
|
apply_to_tar (bool, optional): Whether to apply transformation to the target
|
|
|
|
image. Defaults to True.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, joblib_path, apply_to_tar=True):
|
|
|
|
super(ReduceDim, self).__init__()
|
|
|
|
ext = joblib_path.split(".")[-1]
|
|
|
|
if ext != "joblib":
|
|
|
|
raise ValueError("`joblib_path` must be *.joblib, not *.{}.".format(
|
|
|
|
ext))
|
|
|
|
self.pca = load(joblib_path)
|
|
|
|
self.apply_to_tar = apply_to_tar
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
H, W, C = image.shape
|
|
|
|
n_im = np.reshape(image, (-1, C))
|
|
|
|
im_pca = self.pca.transform(n_im)
|
|
|
|
result = np.reshape(im_pca, (H, W, -1))
|
|
|
|
return result
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
if 'target' in sample and self.apply_to_tar:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class SelectBand(Transform):
|
|
|
|
"""
|
|
|
|
Select a set of bands of input image(s).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
band_list (list, optional): Bands to select (band index starts from 1).
|
|
|
|
Defaults to [1, 2, 3].
|
|
|
|
apply_to_tar (bool, optional): Whether to apply transformation to the target
|
|
|
|
image. Defaults to True.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, band_list=[1, 2, 3], apply_to_tar=True):
|
|
|
|
super(SelectBand, self).__init__()
|
|
|
|
self.band_list = band_list
|
|
|
|
self.apply_to_tar = apply_to_tar
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = F.select_bands(image, self.band_list)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
if 'target' in sample and self.apply_to_tar:
|
|
|
|
sample['target'] = self.apply_im(sample['target'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _PadBox(Transform):
|
|
|
|
def __init__(self, num_max_boxes=50):
|
|
|
|
"""
|
|
|
|
Pad zeros to bboxes if number of bboxes is less than `num_max_boxes`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_max_boxes (int, optional): Max number of bboxes. Defaults to 50.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self.num_max_boxes = num_max_boxes
|
|
|
|
super(_PadBox, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
|
|
|
|
num_max = self.num_max_boxes
|
|
|
|
pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
|
|
|
|
sample['gt_bbox'] = pad_bbox
|
|
|
|
if 'gt_class' in sample:
|
|
|
|
pad_class = np.zeros((num_max, ), dtype=np.int32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
|
|
|
|
sample['gt_class'] = pad_class
|
|
|
|
if 'gt_score' in sample:
|
|
|
|
pad_score = np.zeros((num_max, ), dtype=np.float32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
|
|
|
|
sample['gt_score'] = pad_score
|
|
|
|
# In training, for example in op ExpandImage,
|
|
|
|
# bbox and gt_class are expanded, but difficult is not,
|
|
|
|
# so judge by its length.
|
|
|
|
if 'difficult' in sample:
|
|
|
|
pad_diff = np.zeros((num_max, ), dtype=np.int32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
|
|
|
|
sample['difficult'] = pad_diff
|
|
|
|
if 'is_crowd' in sample:
|
|
|
|
pad_crowd = np.zeros((num_max, ), dtype=np.int32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
|
|
|
|
sample['is_crowd'] = pad_crowd
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _NormalizeBox(Transform):
|
|
|
|
def __init__(self):
|
|
|
|
super(_NormalizeBox, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
height, width = sample['image'].shape[:2]
|
|
|
|
for i in range(sample['gt_bbox'].shape[0]):
|
|
|
|
sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
|
|
|
|
sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
|
|
|
|
sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
|
|
|
|
sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _BboxXYXY2XYWH(Transform):
|
|
|
|
"""
|
|
|
|
Convert bbox XYXY format to XYWH format.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(_BboxXYXY2XYWH, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
bbox = sample['gt_bbox']
|
|
|
|
bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
|
|
|
|
bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
|
|
|
|
sample['gt_bbox'] = bbox
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _Permute(Transform):
|
|
|
|
def __init__(self):
|
|
|
|
super(_Permute, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = F.permute(sample['image'], False)
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = F.permute(sample['image2'], False)
|
|
|
|
if 'target' in sample:
|
|
|
|
sample['target'] = F.permute(sample['target'], False)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomSwap(Transform):
|
|
|
|
"""
|
|
|
|
Randomly swap multi-temporal images.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prob (float, optional): Probability of swapping the input images.
|
|
|
|
Default: 0.2.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, prob=0.2):
|
|
|
|
super(RandomSwap, self).__init__()
|
|
|
|
self.prob = prob
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'image2' not in sample:
|
|
|
|
raise ValueError("'image2' is not found in the sample.")
|
|
|
|
if random.random() < self.prob:
|
|
|
|
sample['image'], sample['image2'] = sample['image2'], sample[
|
|
|
|
'image']
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ReloadMask(Transform):
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'mask' in sample or 'mask_ori' in sample:
|
|
|
|
sample['mask'] = F.decode_seg_mask(sample['mask_ori'])
|
|
|
|
if 'aux_masks' in sample or 'aux_masks_ori' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(F.decode_seg_mask, sample['aux_masks_ori']))
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class AppendIndex(Transform):
|
|
|
|
"""
|
|
|
|
Append remote sensing index to input image(s).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
index_type (str): Type of remote sensinng index. See supported
|
|
|
|
index types in
|
|
|
|
https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py .
|
|
|
|
band_indices (dict, optional): Mapping of band names to band indices
|
|
|
|
(starting from 1). See band names in
|
|
|
|
https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py .
|
|
|
|
Default: None.
|
|
|
|
satellite (str, optional): Type of satellite. If set,
|
|
|
|
band indices will be automatically determined accordingly. See supported satellites in
|
|
|
|
https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/satellites.py .
|
|
|
|
Default: None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, index_type, band_indices=None, satellite=None, **kwargs):
|
|
|
|
super(AppendIndex, self).__init__()
|
|
|
|
cls = getattr(indices, index_type)
|
|
|
|
if satellite is not None:
|
|
|
|
satellite_bands = getattr(satellites, satellite)
|
|
|
|
self._compute_index = cls(satellite_bands, **kwargs)
|
|
|
|
else:
|
|
|
|
if band_indices is None:
|
|
|
|
raise ValueError(
|
|
|
|
"At least one of `band_indices` and `satellite` must not be None."
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
self._compute_index = cls(band_indices, **kwargs)
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
index = self._compute_index(image)
|
|
|
|
index = index[..., None].astype('float32')
|
|
|
|
return np.concatenate([image, index], axis=-1)
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'image2' in sample:
|
|
|
|
sample['image2'] = self.apply_im(sample['image2'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class MatchRadiance(Transform):
|
|
|
|
"""
|
|
|
|
Perform relative radiometric correction between bi-temporal images.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
method (str, optional): Method used to match the radiance of the
|
|
|
|
bi-temporal images. Choices are {'hist', 'lsr', 'fft}. 'hist'
|
|
|
|
stands for histogram matching, 'lsr' stands for least-squares
|
|
|
|
regression, and 'fft' replaces the low-frequency components of
|
|
|
|
the image to match the reference image. Default: 'hist'.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, method='hist'):
|
|
|
|
super(MatchRadiance, self).__init__()
|
|
|
|
|
|
|
|
if method == 'hist':
|
|
|
|
self._match_func = F.match_histograms
|
|
|
|
elif method == 'lsr':
|
|
|
|
self._match_func = F.match_by_regression
|
|
|
|
elif method == 'fft':
|
|
|
|
self._match_func = F.match_lf_components
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"{} is not a supported radiometric correction method.".format(
|
|
|
|
method))
|
|
|
|
|
|
|
|
self.method = method
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'image2' not in sample:
|
|
|
|
raise ValueError("'image2' is not found in the sample.")
|
|
|
|
|
|
|
|
sample['image2'] = self._match_func(sample['image2'], sample['image'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Arrange(Transform):
|
|
|
|
def __init__(self, mode):
|
|
|
|
super().__init__()
|
|
|
|
if mode not in ['train', 'eval', 'test', 'quant']:
|
|
|
|
raise ValueError(
|
|
|
|
"`mode` should be defined as one of ['train', 'eval', 'test', 'quant']!"
|
|
|
|
)
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeSegmenter(Arrange):
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'mask' in sample:
|
|
|
|
mask = sample['mask']
|
|
|
|
mask = mask.astype('int64')
|
|
|
|
|
|
|
|
image = F.permute(sample['image'], False)
|
|
|
|
if self.mode == 'train':
|
|
|
|
return image, mask
|
|
|
|
if self.mode == 'eval':
|
|
|
|
return image, mask
|
|
|
|
if self.mode == 'test':
|
|
|
|
return image,
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeChangeDetector(Arrange):
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'mask' in sample:
|
|
|
|
mask = sample['mask']
|
|
|
|
mask = mask.astype('int64')
|
|
|
|
|
|
|
|
image_t1 = F.permute(sample['image'], False)
|
|
|
|
image_t2 = F.permute(sample['image2'], False)
|
|
|
|
if self.mode == 'train':
|
|
|
|
masks = [mask]
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
masks.extend(
|
|
|
|
map(methodcaller('astype', 'int64'), sample['aux_masks']))
|
|
|
|
return (
|
|
|
|
image_t1,
|
|
|
|
image_t2, ) + tuple(masks)
|
|
|
|
if self.mode == 'eval':
|
|
|
|
return image_t1, image_t2, mask
|
|
|
|
if self.mode == 'test':
|
|
|
|
return image_t1, image_t2,
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeClassifier(Arrange):
|
|
|
|
def apply(self, sample):
|
|
|
|
image = F.permute(sample['image'], False)
|
|
|
|
if self.mode in ['train', 'eval']:
|
|
|
|
return image, sample['label']
|
|
|
|
else:
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeDetector(Arrange):
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.mode == 'eval' and 'gt_poly' in sample:
|
|
|
|
del sample['gt_poly']
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeRestorer(Arrange):
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'target' in sample:
|
|
|
|
target = F.permute(sample['target'], False)
|
|
|
|
image = F.permute(sample['image'], False)
|
|
|
|
if self.mode == 'train':
|
|
|
|
return image, target
|
|
|
|
if self.mode == 'eval':
|
|
|
|
return image, target
|
|
|
|
if self.mode == 'test':
|
|
|
|
return image,
|