|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import math
|
|
|
|
import os.path as osp
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
import paddlers
|
|
|
|
import paddlers.models.ppseg as ppseg
|
|
|
|
import paddlers.rs_models.seg as cmseg
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
from paddlers.models import seg_losses
|
|
|
|
from paddlers.transforms import Resize, decode_image
|
|
|
|
from paddlers.utils import get_single_card_bs, DisablePrint
|
|
|
|
from paddlers.utils.checkpoint import seg_pretrain_weights_dict
|
|
|
|
from .base import BaseModel
|
|
|
|
from .utils import seg_metrics as metrics
|
|
|
|
from .utils.infer_nets import InferSegNet
|
|
|
|
from .utils.slider_predict import slider_predict
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
"UNet", "DeepLabV3P", "FastSCNN", "HRNet", "BiSeNetV2", "FarSeg", "FactSeg"
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class BaseSegmenter(BaseModel):
|
|
|
|
def __init__(self,
|
|
|
|
model_name,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
self.init_params = locals()
|
|
|
|
if 'with_net' in self.init_params:
|
|
|
|
del self.init_params['with_net']
|
|
|
|
super(BaseSegmenter, self).__init__('segmenter')
|
|
|
|
if not hasattr(ppseg.models, model_name) and \
|
|
|
|
not hasattr(cmseg, model_name):
|
|
|
|
raise ValueError("ERROR: There is no model named {}.".format(
|
|
|
|
model_name))
|
|
|
|
self.model_name = model_name
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.use_mixed_loss = use_mixed_loss
|
|
|
|
self.losses = losses
|
|
|
|
self.labels = None
|
|
|
|
if params.get('with_net', True):
|
|
|
|
params.pop('with_net', None)
|
|
|
|
self.net = self.build_net(**params)
|
|
|
|
self.find_unused_parameters = True
|
|
|
|
|
|
|
|
def build_net(self, **params):
|
|
|
|
# TODO: when using paddle.utils.unique_name.guard,
|
|
|
|
# DeepLabv3p and HRNet will raise an error.
|
|
|
|
net = dict(ppseg.models.__dict__, **cmseg.__dict__)[self.model_name](
|
|
|
|
num_classes=self.num_classes, **params)
|
|
|
|
return net
|
|
|
|
|
|
|
|
def _build_inference_net(self):
|
|
|
|
infer_net = InferSegNet(self.net)
|
|
|
|
infer_net.eval()
|
|
|
|
return infer_net
|
|
|
|
|
|
|
|
def _fix_transforms_shape(self, image_shape):
|
|
|
|
if hasattr(self, 'test_transforms'):
|
|
|
|
if self.test_transforms is not None:
|
|
|
|
has_resize_op = False
|
|
|
|
resize_op_idx = -1
|
|
|
|
normalize_op_idx = len(self.test_transforms.transforms)
|
|
|
|
for idx, op in enumerate(self.test_transforms.transforms):
|
|
|
|
name = op.__class__.__name__
|
|
|
|
if name == 'Normalize':
|
|
|
|
normalize_op_idx = idx
|
|
|
|
if 'Resize' in name:
|
|
|
|
has_resize_op = True
|
|
|
|
resize_op_idx = idx
|
|
|
|
|
|
|
|
if not has_resize_op:
|
|
|
|
self.test_transforms.transforms.insert(
|
|
|
|
normalize_op_idx, Resize(target_size=image_shape))
|
|
|
|
else:
|
|
|
|
self.test_transforms.transforms[resize_op_idx] = Resize(
|
|
|
|
target_size=image_shape)
|
|
|
|
|
|
|
|
def _get_test_inputs(self, image_shape):
|
|
|
|
if image_shape is not None:
|
|
|
|
if len(image_shape) == 2:
|
|
|
|
image_shape = [1, 3] + image_shape
|
|
|
|
self._fix_transforms_shape(image_shape[-2:])
|
|
|
|
else:
|
|
|
|
image_shape = [None, 3, -1, -1]
|
|
|
|
self.fixed_input_shape = image_shape
|
|
|
|
input_spec = [
|
|
|
|
InputSpec(
|
|
|
|
shape=image_shape, name='image', dtype='float32')
|
|
|
|
]
|
|
|
|
return input_spec
|
|
|
|
|
|
|
|
def run(self, net, inputs, mode):
|
|
|
|
net_out = net(inputs[0])
|
|
|
|
logit = net_out[0]
|
|
|
|
outputs = OrderedDict()
|
|
|
|
if mode == 'test':
|
|
|
|
origin_shape = inputs[1]
|
|
|
|
if self.status == 'Infer':
|
|
|
|
label_map_list, score_map_list = self.postprocess(
|
|
|
|
net_out, origin_shape, transforms=inputs[2])
|
|
|
|
else:
|
|
|
|
logit_list = self.postprocess(
|
|
|
|
logit, origin_shape, transforms=inputs[2])
|
|
|
|
label_map_list = []
|
|
|
|
score_map_list = []
|
|
|
|
for logit in logit_list:
|
|
|
|
logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
|
|
|
|
label_map_list.append(
|
|
|
|
paddle.argmax(
|
|
|
|
logit, axis=-1, keepdim=False, dtype='int32')
|
|
|
|
.squeeze().numpy())
|
|
|
|
score_map_list.append(
|
|
|
|
F.softmax(
|
|
|
|
logit, axis=-1).squeeze().numpy().astype('float32'))
|
|
|
|
outputs['label_map'] = label_map_list
|
|
|
|
outputs['score_map'] = score_map_list
|
|
|
|
|
|
|
|
if mode == 'eval':
|
|
|
|
if self.status == 'Infer':
|
|
|
|
pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
|
|
|
|
else:
|
|
|
|
pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
|
|
|
|
label = inputs[1]
|
|
|
|
if label.ndim == 3:
|
|
|
|
paddle.unsqueeze_(label, axis=1)
|
|
|
|
if label.ndim != 4:
|
|
|
|
raise ValueError("Expected label.ndim == 4 but got {}".format(
|
|
|
|
label.ndim))
|
|
|
|
origin_shape = [label.shape[-2:]]
|
|
|
|
pred = self.postprocess(
|
|
|
|
pred, origin_shape, transforms=inputs[2])[0] # NCHW
|
|
|
|
intersect_area, pred_area, label_area = ppseg.utils.metrics.calculate_area(
|
|
|
|
pred, label, self.num_classes)
|
|
|
|
outputs['intersect_area'] = intersect_area
|
|
|
|
outputs['pred_area'] = pred_area
|
|
|
|
outputs['label_area'] = label_area
|
|
|
|
outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
|
|
|
|
self.num_classes)
|
|
|
|
if mode == 'train':
|
|
|
|
loss_list = metrics.loss_computation(
|
|
|
|
logits_list=net_out, labels=inputs[1], losses=self.losses)
|
|
|
|
loss = sum(loss_list)
|
|
|
|
outputs['loss'] = loss
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
if isinstance(self.use_mixed_loss, bool):
|
|
|
|
if self.use_mixed_loss:
|
|
|
|
losses = [
|
|
|
|
seg_losses.CrossEntropyLoss(),
|
|
|
|
seg_losses.LovaszSoftmaxLoss()
|
|
|
|
]
|
|
|
|
coef = [.8, .2]
|
|
|
|
loss_type = [seg_losses.MixedLoss(losses=losses, coef=coef), ]
|
|
|
|
else:
|
|
|
|
loss_type = [seg_losses.CrossEntropyLoss()]
|
|
|
|
else:
|
|
|
|
losses, coef = list(zip(*self.use_mixed_loss))
|
|
|
|
if not set(losses).issubset(
|
|
|
|
['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
|
|
|
|
raise ValueError(
|
|
|
|
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
|
|
|
|
)
|
|
|
|
losses = [getattr(seg_losses, loss)() for loss in losses]
|
|
|
|
loss_type = [seg_losses.MixedLoss(losses=losses, coef=list(coef))]
|
|
|
|
loss_coef = [1.0]
|
|
|
|
losses = {'types': loss_type, 'coef': loss_coef}
|
|
|
|
return losses
|
|
|
|
|
|
|
|
def default_optimizer(self,
|
|
|
|
parameters,
|
|
|
|
learning_rate,
|
|
|
|
num_epochs,
|
|
|
|
num_steps_each_epoch,
|
|
|
|
lr_decay_power=0.9):
|
|
|
|
decay_step = num_epochs * num_steps_each_epoch
|
|
|
|
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
|
|
|
|
learning_rate, decay_step, end_lr=0, power=lr_decay_power)
|
|
|
|
optimizer = paddle.optimizer.Momentum(
|
|
|
|
learning_rate=lr_scheduler,
|
|
|
|
parameters=parameters,
|
|
|
|
momentum=0.9,
|
|
|
|
weight_decay=4e-5)
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
def train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
pretrain_weights='CITYSCAPES',
|
|
|
|
learning_rate=0.01,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None):
|
|
|
|
"""
|
|
|
|
Train the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.SegDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.SegDataset|None, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
pretrain_weights (str|None, optional): None or name/path of pretrained
|
|
|
|
weights. If None, no pretrained weights will be loaded.
|
|
|
|
Defaults to 'CITYSCAPES'.
|
|
|
|
learning_rate (float, optional): Learning rate for training. Defaults to .01.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy. Defaults
|
|
|
|
to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
training from. If None, no training checkpoint will be resumed. At most
|
|
|
|
Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
|
|
|
|
Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.status == 'Infer':
|
|
|
|
logging.error(
|
|
|
|
"Exported inference model does not support training.",
|
|
|
|
exit=True)
|
|
|
|
if pretrain_weights is not None and resume_checkpoint is not None:
|
|
|
|
logging.error(
|
|
|
|
"`pretrain_weights` and `resume_checkpoint` cannot be set simultaneously.",
|
|
|
|
exit=True)
|
|
|
|
self.labels = train_dataset.labels
|
|
|
|
if self.losses is None:
|
|
|
|
self.losses = self.default_loss()
|
|
|
|
|
|
|
|
if optimizer is None:
|
|
|
|
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
|
|
self.optimizer = self.default_optimizer(
|
|
|
|
self.net.parameters(), learning_rate, num_epochs,
|
|
|
|
num_steps_each_epoch, lr_decay_power)
|
|
|
|
else:
|
|
|
|
self.optimizer = optimizer
|
|
|
|
|
|
|
|
if pretrain_weights is not None:
|
|
|
|
if not osp.exists(pretrain_weights):
|
|
|
|
if self.model_name not in seg_pretrain_weights_dict:
|
|
|
|
logging.warning(
|
|
|
|
"Path of pretrained weights ('{}') does not exist!".
|
|
|
|
format(pretrain_weights))
|
|
|
|
pretrain_weights = None
|
|
|
|
elif pretrain_weights not in seg_pretrain_weights_dict[
|
|
|
|
self.model_name]:
|
|
|
|
logging.warning(
|
|
|
|
"Path of pretrained weights ('{}') does not exist!".
|
|
|
|
format(pretrain_weights))
|
|
|
|
pretrain_weights = seg_pretrain_weights_dict[
|
|
|
|
self.model_name][0]
|
|
|
|
logging.warning(
|
|
|
|
"`pretrain_weights` is forcibly set to '{}'. "
|
|
|
|
"If you don't want to use pretrained weights, "
|
|
|
|
"please set `pretrain_weights` to None.".format(
|
|
|
|
pretrain_weights))
|
|
|
|
else:
|
|
|
|
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
|
|
logging.error(
|
|
|
|
"Invalid pretrained weights. Please specify a .pdparams file.",
|
|
|
|
exit=True)
|
|
|
|
pretrained_dir = osp.join(save_dir, 'pretrain')
|
|
|
|
is_backbone_weights = pretrain_weights == 'IMAGENET'
|
|
|
|
self.initialize_net(
|
|
|
|
pretrain_weights=pretrain_weights,
|
|
|
|
save_dir=pretrained_dir,
|
|
|
|
resume_checkpoint=resume_checkpoint,
|
|
|
|
is_backbone_weights=is_backbone_weights)
|
|
|
|
|
|
|
|
self.train_loop(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl)
|
|
|
|
|
|
|
|
def quant_aware_train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
learning_rate=0.0001,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None,
|
|
|
|
quant_config=None):
|
|
|
|
"""
|
|
|
|
Quantization-aware training.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.SegDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.SegDataset|None, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
learning_rate (float, optional): Learning rate for training.
|
|
|
|
Defaults to .0001.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy.
|
|
|
|
Defaults to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
quant_config (dict|None, optional): Quantization configuration. If None,
|
|
|
|
a default rule of thumb configuration will be used. Defaults to None.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
quantization-aware training from. If None, no training checkpoint will
|
|
|
|
be resumed. Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._prepare_qat(quant_config)
|
|
|
|
self.train(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
optimizer=optimizer,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
pretrain_weights=None,
|
|
|
|
learning_rate=learning_rate,
|
|
|
|
lr_decay_power=lr_decay_power,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl,
|
|
|
|
resume_checkpoint=resume_checkpoint)
|
|
|
|
|
|
|
|
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
|
|
|
|
"""
|
|
|
|
Evaluate the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
eval_dataset (paddlers.datasets.SegDataset): Evaluation dataset.
|
|
|
|
batch_size (int, optional): Total batch size among all cards used for
|
|
|
|
evaluation. Defaults to 1.
|
|
|
|
return_details (bool, optional): Whether to return evaluation details.
|
|
|
|
Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
collections.OrderedDict with key-value pairs:
|
|
|
|
{"miou": mean intersection over union,
|
|
|
|
"category_iou": category-wise mean intersection over union,
|
|
|
|
"oacc": overall accuracy,
|
|
|
|
"category_acc": category-wise accuracy,
|
|
|
|
"kappa": kappa coefficient,
|
|
|
|
"category_F1-score": F1 score}.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._check_transforms(eval_dataset.transforms, 'eval')
|
|
|
|
|
|
|
|
self.net.eval()
|
|
|
|
nranks = paddle.distributed.get_world_size()
|
|
|
|
local_rank = paddle.distributed.get_rank()
|
|
|
|
if nranks > 1:
|
|
|
|
# Initialize parallel environment if not done.
|
|
|
|
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
|
|
|
):
|
|
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
|
|
|
|
batch_size_each_card = get_single_card_bs(batch_size)
|
|
|
|
if batch_size_each_card > 1:
|
|
|
|
batch_size_each_card = 1
|
|
|
|
batch_size = batch_size_each_card * paddlers.env_info['num']
|
|
|
|
logging.warning(
|
|
|
|
"Segmenter only supports batch_size=1 for each gpu/cpu card " \
|
|
|
|
"during evaluation, so batch_size " \
|
|
|
|
"is forcibly set to {}.".format(batch_size))
|
|
|
|
self.eval_data_loader = self.build_data_loader(
|
|
|
|
eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
|
|
|
|
|
intersect_area_all = 0
|
|
|
|
pred_area_all = 0
|
|
|
|
label_area_all = 0
|
|
|
|
conf_mat_all = []
|
|
|
|
logging.info(
|
|
|
|
"Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
|
eval_dataset.num_samples,
|
|
|
|
math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
|
|
|
|
with paddle.no_grad():
|
|
|
|
for step, data in enumerate(self.eval_data_loader):
|
|
|
|
data.append(eval_dataset.transforms.transforms)
|
|
|
|
outputs = self.run(self.net, data, 'eval')
|
|
|
|
pred_area = outputs['pred_area']
|
|
|
|
label_area = outputs['label_area']
|
|
|
|
intersect_area = outputs['intersect_area']
|
|
|
|
conf_mat = outputs['conf_mat']
|
|
|
|
|
|
|
|
# Gather from all ranks
|
|
|
|
if nranks > 1:
|
|
|
|
intersect_area_list = []
|
|
|
|
pred_area_list = []
|
|
|
|
label_area_list = []
|
|
|
|
conf_mat_list = []
|
|
|
|
paddle.distributed.all_gather(intersect_area_list,
|
|
|
|
intersect_area)
|
|
|
|
paddle.distributed.all_gather(pred_area_list, pred_area)
|
|
|
|
paddle.distributed.all_gather(label_area_list, label_area)
|
|
|
|
paddle.distributed.all_gather(conf_mat_list, conf_mat)
|
|
|
|
|
|
|
|
# Some image has been evaluated and should be eliminated in last iter
|
|
|
|
if (step + 1) * nranks > len(eval_dataset):
|
|
|
|
valid = len(eval_dataset) - step * nranks
|
|
|
|
intersect_area_list = intersect_area_list[:valid]
|
|
|
|
pred_area_list = pred_area_list[:valid]
|
|
|
|
label_area_list = label_area_list[:valid]
|
|
|
|
conf_mat_list = conf_mat_list[:valid]
|
|
|
|
|
|
|
|
intersect_area_all += sum(intersect_area_list)
|
|
|
|
pred_area_all += sum(pred_area_list)
|
|
|
|
label_area_all += sum(label_area_list)
|
|
|
|
conf_mat_all.extend(conf_mat_list)
|
|
|
|
|
|
|
|
else:
|
|
|
|
intersect_area_all = intersect_area_all + intersect_area
|
|
|
|
pred_area_all = pred_area_all + pred_area
|
|
|
|
label_area_all = label_area_all + label_area
|
|
|
|
conf_mat_all.append(conf_mat)
|
|
|
|
class_iou, miou = ppseg.utils.metrics.mean_iou(
|
|
|
|
intersect_area_all, pred_area_all, label_area_all)
|
|
|
|
class_acc, oacc = ppseg.utils.metrics.accuracy(intersect_area_all,
|
|
|
|
pred_area_all)
|
|
|
|
kappa = ppseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
|
|
|
|
label_area_all)
|
|
|
|
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
|
|
|
|
label_area_all)
|
|
|
|
eval_metrics = OrderedDict(
|
|
|
|
zip([
|
|
|
|
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
|
|
|
|
'category_F1-score'
|
|
|
|
], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
|
|
|
|
|
|
|
|
if return_details:
|
|
|
|
conf_mat = sum(conf_mat_all)
|
|
|
|
eval_details = {'confusion_matrix': conf_mat.tolist()}
|
|
|
|
return eval_metrics, eval_details
|
|
|
|
return eval_metrics
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def predict(self, img_file, transforms=None):
|
|
|
|
"""
|
|
|
|
Do inference.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file (list[np.ndarray|str] | str | np.ndarray): Image path or decoded
|
|
|
|
image data, which also could constitute a list, meaning all images to be
|
|
|
|
predicted as a mini-batch.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Transforms for
|
|
|
|
inputs. If None, the transforms for evaluation process will be used.
|
|
|
|
Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
If `img_file` is a tuple of string or np.array, the result is a dict with
|
|
|
|
the following key-value pairs:
|
|
|
|
label_map (np.ndarray): Predicted label map (HW).
|
|
|
|
score_map (np.ndarray): Prediction score map (HWC).
|
|
|
|
|
|
|
|
If `img_file` is a list, the result is a list composed of dicts with the
|
|
|
|
above keys.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if transforms is None and not hasattr(self, 'test_transforms'):
|
|
|
|
raise ValueError("transforms need to be defined, now is None.")
|
|
|
|
if transforms is None:
|
|
|
|
transforms = self.test_transforms
|
|
|
|
if isinstance(img_file, (str, np.ndarray)):
|
|
|
|
images = [img_file]
|
|
|
|
else:
|
|
|
|
images = img_file
|
|
|
|
batch_im, batch_origin_shape = self.preprocess(images, transforms,
|
|
|
|
self.model_type)
|
|
|
|
self.net.eval()
|
|
|
|
data = (batch_im, batch_origin_shape, transforms.transforms)
|
|
|
|
outputs = self.run(self.net, data, 'test')
|
|
|
|
label_map_list = outputs['label_map']
|
|
|
|
score_map_list = outputs['score_map']
|
|
|
|
if isinstance(img_file, list):
|
|
|
|
prediction = [{
|
|
|
|
'label_map': l,
|
|
|
|
'score_map': s
|
|
|
|
} for l, s in zip(label_map_list, score_map_list)]
|
|
|
|
else:
|
|
|
|
prediction = {
|
|
|
|
'label_map': label_map_list[0],
|
|
|
|
'score_map': score_map_list[0]
|
|
|
|
}
|
|
|
|
return prediction
|
|
|
|
|
|
|
|
def slider_predict(self,
|
|
|
|
img_file,
|
|
|
|
save_dir,
|
|
|
|
block_size,
|
|
|
|
overlap=36,
|
|
|
|
transforms=None,
|
|
|
|
invalid_value=255,
|
|
|
|
merge_strategy='keep_last',
|
|
|
|
batch_size=1,
|
|
|
|
quiet=False):
|
|
|
|
"""
|
|
|
|
Do inference using sliding windows.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file (str): Image path.
|
|
|
|
save_dir (str): Directory that contains saved geotiff file.
|
|
|
|
block_size (list[int] | tuple[int] | int):
|
|
|
|
Size of block. If `block_size` is list or tuple, it should be in
|
|
|
|
(W, H) format.
|
|
|
|
overlap (list[int] | tuple[int] | int, optional):
|
|
|
|
Overlap between two blocks. If `overlap` is list or tuple, it should
|
|
|
|
be in (W, H) format. Defaults to 36.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Transforms for
|
|
|
|
inputs. If None, the transforms for evaluation process will be used.
|
|
|
|
Defaults to None.
|
|
|
|
invalid_value (int, optional): Value that marks invalid pixels in output
|
|
|
|
image. Defaults to 255.
|
|
|
|
merge_strategy (str, optional): Strategy to merge overlapping blocks. Choices
|
|
|
|
are {'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last'
|
|
|
|
means keeping the values of the first and the last block in traversal
|
|
|
|
order, respectively. 'accum' means determining the class of an overlapping
|
|
|
|
pixel according to accumulated probabilities. Defaults to 'keep_last'.
|
|
|
|
batch_size (int, optional): Batch size used in inference. Defaults to 1.
|
|
|
|
quiet (bool, optional): If True, disable the progress bar. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
slider_predict(self.predict, img_file, save_dir, block_size, overlap,
|
|
|
|
transforms, invalid_value, merge_strategy, batch_size,
|
|
|
|
not quiet)
|
|
|
|
|
|
|
|
def preprocess(self, images, transforms, to_tensor=True):
|
|
|
|
self._check_transforms(transforms, 'test')
|
|
|
|
batch_im = list()
|
|
|
|
batch_ori_shape = list()
|
|
|
|
for im in images:
|
|
|
|
if isinstance(im, str):
|
|
|
|
im = decode_image(im, read_raw=True)
|
|
|
|
ori_shape = im.shape[:2]
|
|
|
|
sample = {'image': im}
|
|
|
|
im = transforms(sample)[0]
|
|
|
|
batch_im.append(im)
|
|
|
|
batch_ori_shape.append(ori_shape)
|
|
|
|
if to_tensor:
|
|
|
|
batch_im = paddle.to_tensor(batch_im)
|
|
|
|
else:
|
|
|
|
batch_im = np.asarray(batch_im)
|
|
|
|
|
|
|
|
return batch_im, batch_ori_shape
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_transforms_shape_info(batch_ori_shape, transforms):
|
|
|
|
batch_restore_list = list()
|
|
|
|
for ori_shape in batch_ori_shape:
|
|
|
|
restore_list = list()
|
|
|
|
h, w = ori_shape[0], ori_shape[1]
|
|
|
|
for op in transforms:
|
|
|
|
if op.__class__.__name__ == 'Resize':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
h, w = op.target_size
|
|
|
|
elif op.__class__.__name__ == 'ResizeByShort':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_short_size = min(h, w)
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.short_size) / float(im_short_size)
|
|
|
|
if 0 < op.max_size < np.round(scale * im_long_size):
|
|
|
|
scale = float(op.max_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'ResizeByLong':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.long_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'Pad':
|
|
|
|
if op.target_size:
|
|
|
|
target_h, target_w = op.target_size
|
|
|
|
else:
|
|
|
|
target_h = int(
|
|
|
|
(np.ceil(h / op.size_divisor) * op.size_divisor))
|
|
|
|
target_w = int(
|
|
|
|
(np.ceil(w / op.size_divisor) * op.size_divisor))
|
|
|
|
|
|
|
|
if op.pad_mode == -1:
|
|
|
|
offsets = op.offsets
|
|
|
|
elif op.pad_mode == 0:
|
|
|
|
offsets = [0, 0]
|
|
|
|
elif op.pad_mode == 1:
|
|
|
|
offsets = [(target_h - h) // 2, (target_w - w) // 2]
|
|
|
|
else:
|
|
|
|
offsets = [target_h - h, target_w - w]
|
|
|
|
restore_list.append(('padding', (h, w), offsets))
|
|
|
|
h, w = target_h, target_w
|
|
|
|
|
|
|
|
batch_restore_list.append(restore_list)
|
|
|
|
return batch_restore_list
|
|
|
|
|
|
|
|
def postprocess(self, batch_pred, batch_origin_shape, transforms):
|
|
|
|
batch_restore_list = BaseSegmenter.get_transforms_shape_info(
|
|
|
|
batch_origin_shape, transforms)
|
|
|
|
if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
|
|
|
|
return self._infer_postprocess(
|
|
|
|
batch_label_map=batch_pred[0],
|
|
|
|
batch_score_map=batch_pred[1],
|
|
|
|
batch_restore_list=batch_restore_list)
|
|
|
|
results = []
|
|
|
|
if batch_pred.dtype == paddle.float32:
|
|
|
|
mode = 'bilinear'
|
|
|
|
else:
|
|
|
|
mode = 'nearest'
|
|
|
|
for pred, restore_list in zip(batch_pred, batch_restore_list):
|
|
|
|
pred = paddle.unsqueeze(pred, axis=0)
|
|
|
|
for item in restore_list[::-1]:
|
|
|
|
h, w = item[1][0], item[1][1]
|
|
|
|
if item[0] == 'resize':
|
|
|
|
pred = F.interpolate(
|
|
|
|
pred, (h, w), mode=mode, data_format='NCHW')
|
|
|
|
elif item[0] == 'padding':
|
|
|
|
x, y = item[2]
|
|
|
|
pred = pred[:, :, y:y + h, x:x + w]
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
results.append(pred)
|
|
|
|
return results
|
|
|
|
|
|
|
|
def _infer_postprocess(self, batch_label_map, batch_score_map,
|
|
|
|
batch_restore_list):
|
|
|
|
label_maps = []
|
|
|
|
score_maps = []
|
|
|
|
for label_map, score_map, restore_list in zip(
|
|
|
|
batch_label_map, batch_score_map, batch_restore_list):
|
|
|
|
if not isinstance(label_map, np.ndarray):
|
|
|
|
label_map = paddle.unsqueeze(label_map, axis=[0, 3])
|
|
|
|
score_map = paddle.unsqueeze(score_map, axis=0)
|
|
|
|
for item in restore_list[::-1]:
|
|
|
|
h, w = item[1][0], item[1][1]
|
|
|
|
if item[0] == 'resize':
|
|
|
|
if isinstance(label_map, np.ndarray):
|
|
|
|
label_map = cv2.resize(
|
|
|
|
label_map, (w, h), interpolation=cv2.INTER_NEAREST)
|
|
|
|
score_map = cv2.resize(
|
|
|
|
score_map, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
else:
|
|
|
|
label_map = F.interpolate(
|
|
|
|
label_map, (h, w),
|
|
|
|
mode='nearest',
|
|
|
|
data_format='NHWC')
|
|
|
|
score_map = F.interpolate(
|
|
|
|
score_map, (h, w),
|
|
|
|
mode='bilinear',
|
|
|
|
data_format='NHWC')
|
|
|
|
elif item[0] == 'padding':
|
|
|
|
x, y = item[2]
|
|
|
|
if isinstance(label_map, np.ndarray):
|
|
|
|
label_map = label_map[y:y + h, x:x + w]
|
|
|
|
score_map = score_map[y:y + h, x:x + w]
|
|
|
|
else:
|
|
|
|
label_map = label_map[:, y:y + h, x:x + w, :]
|
|
|
|
score_map = score_map[:, y:y + h, x:x + w, :]
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
label_map = label_map.squeeze()
|
|
|
|
score_map = score_map.squeeze()
|
|
|
|
if not isinstance(label_map, np.ndarray):
|
|
|
|
label_map = label_map.numpy()
|
|
|
|
score_map = score_map.numpy()
|
|
|
|
label_maps.append(label_map.squeeze())
|
|
|
|
score_maps.append(score_map.squeeze())
|
|
|
|
return label_maps, score_maps
|
|
|
|
|
|
|
|
def _check_transforms(self, transforms, mode):
|
|
|
|
super()._check_transforms(transforms, mode)
|
|
|
|
if not isinstance(transforms.arrange,
|
|
|
|
paddlers.transforms.ArrangeSegmenter):
|
|
|
|
raise TypeError(
|
|
|
|
"`transforms.arrange` must be an ArrangeSegmenter object.")
|
|
|
|
|
|
|
|
def set_losses(self, losses, weights=None):
|
|
|
|
if weights is None:
|
|
|
|
weights = [1. for _ in range(len(losses))]
|
|
|
|
self.losses = {'types': losses, 'coef': weights}
|
|
|
|
|
|
|
|
|
|
|
|
class UNet(BaseSegmenter):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
use_deconv=False,
|
|
|
|
align_corners=False,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'use_deconv': use_deconv,
|
|
|
|
'align_corners': align_corners
|
|
|
|
})
|
|
|
|
super(UNet, self).__init__(
|
|
|
|
model_name='UNet',
|
|
|
|
in_channels=in_channels,
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class DeepLabV3P(BaseSegmenter):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
backbone='ResNet50_vd',
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
output_stride=8,
|
|
|
|
backbone_indices=(0, 3),
|
|
|
|
aspp_ratios=(1, 12, 24, 36),
|
|
|
|
aspp_out_channels=256,
|
|
|
|
align_corners=False,
|
|
|
|
**params):
|
|
|
|
self.backbone_name = backbone
|
|
|
|
if backbone not in ['ResNet50_vd', 'ResNet101_vd']:
|
|
|
|
raise ValueError(
|
|
|
|
"backbone: {} is not supported. Please choose one of "
|
|
|
|
"{'ResNet50_vd', 'ResNet101_vd'}.".format(backbone))
|
|
|
|
if params.get('with_net', True):
|
|
|
|
with DisablePrint():
|
|
|
|
backbone = getattr(ppseg.models, backbone)(
|
|
|
|
in_channels=in_channels, output_stride=output_stride)
|
|
|
|
else:
|
|
|
|
backbone = None
|
|
|
|
params.update({
|
|
|
|
'backbone': backbone,
|
|
|
|
'backbone_indices': backbone_indices,
|
|
|
|
'aspp_ratios': aspp_ratios,
|
|
|
|
'aspp_out_channels': aspp_out_channels,
|
|
|
|
'align_corners': align_corners
|
|
|
|
})
|
|
|
|
super(DeepLabV3P, self).__init__(
|
|
|
|
model_name='DeepLabV3P',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class FastSCNN(BaseSegmenter):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
align_corners=False,
|
|
|
|
**params):
|
|
|
|
params.update({'align_corners': align_corners})
|
|
|
|
super(FastSCNN, self).__init__(
|
|
|
|
model_name='FastSCNN',
|
|
|
|
in_channels=in_channels,
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
losses = super(FastSCNN, self).default_loss()
|
|
|
|
losses['types'] *= 2
|
|
|
|
losses['coef'] = [1.0, 0.4]
|
|
|
|
return losses
|
|
|
|
|
|
|
|
|
|
|
|
class HRNet(BaseSegmenter):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
width=48,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
align_corners=False,
|
|
|
|
**params):
|
|
|
|
if width not in (18, 48):
|
|
|
|
raise ValueError(
|
|
|
|
"width={} is not supported, please choose from {18, 48}.".
|
|
|
|
format(width))
|
|
|
|
self.backbone_name = 'HRNet_W{}'.format(width)
|
|
|
|
if params.get('with_net', True):
|
|
|
|
with DisablePrint():
|
|
|
|
backbone = getattr(ppseg.models, self.backbone_name)(
|
|
|
|
in_channels=in_channels, align_corners=align_corners)
|
|
|
|
else:
|
|
|
|
backbone = None
|
|
|
|
|
|
|
|
params.update({'backbone': backbone, 'align_corners': align_corners})
|
|
|
|
super(HRNet, self).__init__(
|
|
|
|
model_name='FCN',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
self.model_name = 'HRNet'
|
|
|
|
|
|
|
|
|
|
|
|
class BiSeNetV2(BaseSegmenter):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
align_corners=False,
|
|
|
|
**params):
|
|
|
|
params.update({'align_corners': align_corners})
|
|
|
|
super(BiSeNetV2, self).__init__(
|
|
|
|
model_name='BiSeNetV2',
|
|
|
|
in_channels=in_channels,
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
losses = super(BiSeNetV2, self).default_loss()
|
|
|
|
losses['types'] *= 5
|
|
|
|
losses['coef'] = [1.0] * 5
|
|
|
|
return losses
|
|
|
|
|
|
|
|
|
|
|
|
class FarSeg(BaseSegmenter):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
super(FarSeg, self).__init__(
|
|
|
|
model_name='FarSeg',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
in_channels=in_channels,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class FactSeg(BaseSegmenter):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
super(FactSeg, self).__init__(
|
|
|
|
model_name='FactSeg',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
in_channels=in_channels,
|
|
|
|
**params)
|