You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
6.2 KiB
180 lines
6.2 KiB
2 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import copy
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
|
||
|
__all__ = ['fuse_conv_bn']
|
||
|
|
||
|
|
||
|
def fuse_conv_bn(model):
|
||
|
is_train = False
|
||
|
if model.training:
|
||
|
model.eval()
|
||
|
is_train = True
|
||
|
fuse_list = []
|
||
|
tmp_pair = [None, None]
|
||
|
for name, layer in model.named_sublayers():
|
||
|
if isinstance(layer, nn.Conv2D):
|
||
|
tmp_pair[0] = name
|
||
|
if isinstance(layer, nn.BatchNorm2D):
|
||
|
tmp_pair[1] = name
|
||
|
|
||
|
if tmp_pair[0] and tmp_pair[1] and len(tmp_pair) == 2:
|
||
|
fuse_list.append(tmp_pair)
|
||
|
tmp_pair = [None, None]
|
||
|
model = fuse_layers(model, fuse_list)
|
||
|
if is_train:
|
||
|
model.train()
|
||
|
return model
|
||
|
|
||
|
|
||
|
def find_parent_layer_and_sub_name(model, name):
|
||
|
"""
|
||
|
Given the model and the name of a layer, find the parent layer and
|
||
|
the sub_name of the layer.
|
||
|
For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
|
||
|
'block_1/convbn_1' and the sub_name is `conv_1`.
|
||
|
Args:
|
||
|
model(paddle.nn.Layer): the model to be quantized.
|
||
|
name(string): the name of a layer
|
||
|
|
||
|
Returns:
|
||
|
parent_layer, subname
|
||
|
"""
|
||
|
assert isinstance(model, nn.Layer), \
|
||
|
"The model must be the instance of paddle.nn.Layer."
|
||
|
assert len(name) > 0, "The input (name) should not be empty."
|
||
|
|
||
|
last_idx = 0
|
||
|
idx = 0
|
||
|
parent_layer = model
|
||
|
while idx < len(name):
|
||
|
if name[idx] == '.':
|
||
|
sub_name = name[last_idx:idx]
|
||
|
if hasattr(parent_layer, sub_name):
|
||
|
parent_layer = getattr(parent_layer, sub_name)
|
||
|
last_idx = idx + 1
|
||
|
idx += 1
|
||
|
sub_name = name[last_idx:idx]
|
||
|
return parent_layer, sub_name
|
||
|
|
||
|
|
||
|
class Identity(nn.Layer):
|
||
|
'''a layer to replace bn or relu layers'''
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super(Identity, self).__init__()
|
||
|
|
||
|
def forward(self, input):
|
||
|
return input
|
||
|
|
||
|
|
||
|
def fuse_layers(model, layers_to_fuse, inplace=False):
|
||
|
'''
|
||
|
fuse layers in layers_to_fuse
|
||
|
|
||
|
Args:
|
||
|
model(nn.Layer): The model to be fused.
|
||
|
layers_to_fuse(list): The layers' names to be fused. For
|
||
|
example,"fuse_list = [["conv1", "bn1"], ["conv2", "bn2"]]".
|
||
|
A TypeError would be raised if "fuse" was set as
|
||
|
True but "fuse_list" was None.
|
||
|
Default: None.
|
||
|
inplace(bool): Whether apply fusing to the input model.
|
||
|
Default: False.
|
||
|
|
||
|
Return
|
||
|
fused_model(paddle.nn.Layer): The fused model.
|
||
|
'''
|
||
|
if not inplace:
|
||
|
model = copy.deepcopy(model)
|
||
|
for layers_list in layers_to_fuse:
|
||
|
layer_list = []
|
||
|
for layer_name in layers_list:
|
||
|
parent_layer, sub_name = find_parent_layer_and_sub_name(model,
|
||
|
layer_name)
|
||
|
layer_list.append(getattr(parent_layer, sub_name))
|
||
|
new_layers = _fuse_func(layer_list)
|
||
|
for i, item in enumerate(layers_list):
|
||
|
parent_layer, sub_name = find_parent_layer_and_sub_name(model, item)
|
||
|
setattr(parent_layer, sub_name, new_layers[i])
|
||
|
return model
|
||
|
|
||
|
|
||
|
def _fuse_func(layer_list):
|
||
|
'''choose the fuser method and fuse layers'''
|
||
|
types = tuple(type(m) for m in layer_list)
|
||
|
fusion_method = types_to_fusion_method.get(types, None)
|
||
|
new_layers = [None] * len(layer_list)
|
||
|
fused_layer = fusion_method(*layer_list)
|
||
|
for handle_id, pre_hook_fn in layer_list[0]._forward_pre_hooks.items():
|
||
|
fused_layer.register_forward_pre_hook(pre_hook_fn)
|
||
|
del layer_list[0]._forward_pre_hooks[handle_id]
|
||
|
for handle_id, hook_fn in layer_list[-1]._forward_post_hooks.items():
|
||
|
fused_layer.register_forward_post_hook(hook_fn)
|
||
|
del layer_list[-1]._forward_post_hooks[handle_id]
|
||
|
new_layers[0] = fused_layer
|
||
|
for i in range(1, len(layer_list)):
|
||
|
identity = Identity()
|
||
|
identity.training = layer_list[0].training
|
||
|
new_layers[i] = identity
|
||
|
return new_layers
|
||
|
|
||
|
|
||
|
def _fuse_conv_bn(conv, bn):
|
||
|
'''fuse conv and bn for train or eval'''
|
||
|
assert(conv.training == bn.training),\
|
||
|
"Conv and BN both must be in the same mode (train or eval)."
|
||
|
if conv.training:
|
||
|
assert bn._num_features == conv._out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
|
||
|
raise NotImplementedError
|
||
|
else:
|
||
|
return _fuse_conv_bn_eval(conv, bn)
|
||
|
|
||
|
|
||
|
def _fuse_conv_bn_eval(conv, bn):
|
||
|
'''fuse conv and bn for eval'''
|
||
|
assert (not (conv.training or bn.training)), "Fusion only for eval!"
|
||
|
fused_conv = copy.deepcopy(conv)
|
||
|
|
||
|
fused_weight, fused_bias = _fuse_conv_bn_weights(
|
||
|
fused_conv.weight, fused_conv.bias, bn._mean, bn._variance, bn._epsilon,
|
||
|
bn.weight, bn.bias)
|
||
|
fused_conv.weight.set_value(fused_weight)
|
||
|
if fused_conv.bias is None:
|
||
|
fused_conv.bias = paddle.create_parameter(
|
||
|
shape=[fused_conv._out_channels], is_bias=True, dtype=bn.bias.dtype)
|
||
|
fused_conv.bias.set_value(fused_bias)
|
||
|
return fused_conv
|
||
|
|
||
|
|
||
|
def _fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
|
||
|
'''fuse weights and bias of conv and bn'''
|
||
|
if conv_b is None:
|
||
|
conv_b = paddle.zeros_like(bn_rm)
|
||
|
if bn_w is None:
|
||
|
bn_w = paddle.ones_like(bn_rm)
|
||
|
if bn_b is None:
|
||
|
bn_b = paddle.zeros_like(bn_rm)
|
||
|
bn_var_rsqrt = paddle.rsqrt(bn_rv + bn_eps)
|
||
|
conv_w = conv_w * \
|
||
|
(bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
|
||
|
conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b
|
||
|
return conv_w, conv_b
|
||
|
|
||
|
|
||
|
types_to_fusion_method = {(nn.Conv2D, nn.BatchNorm2D): _fuse_conv_bn, }
|