|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os.path as osp
|
|
|
|
from operator import itemgetter
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle.inference import Config
|
|
|
|
from paddle.inference import create_predictor
|
|
|
|
from paddle.inference import PrecisionType
|
|
|
|
|
|
|
|
from paddlers.tasks import load_model
|
|
|
|
from paddlers.utils import logging, Timer
|
|
|
|
from paddlers.tasks.utils.slider_predict import slider_predict
|
|
|
|
|
|
|
|
|
|
|
|
class Predictor(object):
|
|
|
|
def __init__(self,
|
|
|
|
model_dir,
|
|
|
|
use_gpu=False,
|
|
|
|
gpu_id=0,
|
|
|
|
cpu_thread_num=1,
|
|
|
|
use_mkl=True,
|
|
|
|
mkl_thread_num=4,
|
|
|
|
use_trt=False,
|
|
|
|
use_glog=False,
|
|
|
|
memory_optimize=True,
|
|
|
|
max_trt_batch_size=1,
|
|
|
|
trt_precision_mode='float32'):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
model_dir (str): Path of the exported model.
|
|
|
|
use_gpu (bool, optional): Whether to use a GPU. Defaults to False.
|
|
|
|
gpu_id (int, optional): GPU ID. Defaults to 0.
|
|
|
|
cpu_thread_num (int, optional): Number of threads to use when making predictions using CPUs.
|
|
|
|
Defaults to 1.
|
|
|
|
use_mkl (bool, optional): Whether to use MKL-DNN. Defaults to False.
|
|
|
|
mkl_thread_num (int, optional): Number of MKL threads. Defaults to 4.
|
|
|
|
use_trt (bool, optional): Whether to use TensorRT. Defaults to False.
|
|
|
|
use_glog (bool, optional): Whether to enable glog logs. Defaults to False.
|
|
|
|
memory_optimize (bool, optional): Whether to enable memory optimization. Defaults to True.
|
|
|
|
max_trt_batch_size (int, optional): Maximum batch size when configured with TensorRT. Defaults to 1.
|
|
|
|
trt_precision_mode (str, optional):Precision to use when configured with TensorRT. Possible values
|
|
|
|
are {'float32', 'float16'}. Defaults to 'float32'.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self.model_dir = model_dir
|
|
|
|
self._model = load_model(model_dir, with_net=False)
|
|
|
|
|
|
|
|
if trt_precision_mode.lower() == 'float32':
|
|
|
|
trt_precision_mode = PrecisionType.Float32
|
|
|
|
elif trt_precision_mode.lower() == 'float16':
|
|
|
|
trt_precision_mode = PrecisionType.Float16
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"TensorRT precision mode {} is invalid. Supported modes are float32 and float16."
|
|
|
|
.format(trt_precision_mode),
|
|
|
|
exit=True)
|
|
|
|
|
|
|
|
self.predictor = self.create_predictor(
|
|
|
|
use_gpu=use_gpu,
|
|
|
|
gpu_id=gpu_id,
|
|
|
|
cpu_thread_num=cpu_thread_num,
|
|
|
|
use_mkl=use_mkl,
|
|
|
|
mkl_thread_num=mkl_thread_num,
|
|
|
|
use_trt=use_trt,
|
|
|
|
use_glog=use_glog,
|
|
|
|
memory_optimize=memory_optimize,
|
|
|
|
max_trt_batch_size=max_trt_batch_size,
|
|
|
|
trt_precision_mode=trt_precision_mode)
|
|
|
|
self.timer = Timer()
|
|
|
|
|
|
|
|
def create_predictor(self,
|
|
|
|
use_gpu=True,
|
|
|
|
gpu_id=0,
|
|
|
|
cpu_thread_num=1,
|
|
|
|
use_mkl=True,
|
|
|
|
mkl_thread_num=4,
|
|
|
|
use_trt=False,
|
|
|
|
use_glog=False,
|
|
|
|
memory_optimize=True,
|
|
|
|
max_trt_batch_size=1,
|
|
|
|
trt_precision_mode=PrecisionType.Float32):
|
|
|
|
config = Config(
|
|
|
|
osp.join(self.model_dir, 'model.pdmodel'),
|
|
|
|
osp.join(self.model_dir, 'model.pdiparams'))
|
|
|
|
|
|
|
|
if use_gpu:
|
|
|
|
# Set memory on GPUs (in MB) and device ID
|
|
|
|
config.enable_use_gpu(200, gpu_id)
|
|
|
|
config.switch_ir_optim(True)
|
|
|
|
if use_trt:
|
|
|
|
if self.model_type == 'segmenter':
|
|
|
|
logging.warning(
|
|
|
|
"Semantic segmentation models do not support TensorRT acceleration, "
|
|
|
|
"TensorRT is forcibly disabled.")
|
|
|
|
elif self.model_type == 'detector' and 'RCNN' in self._model.__class__.__name__:
|
|
|
|
logging.warning(
|
|
|
|
"RCNN models do not support TensorRT acceleration, "
|
|
|
|
"TensorRT is forcibly disabled.")
|
|
|
|
else:
|
|
|
|
config.enable_tensorrt_engine(
|
|
|
|
workspace_size=1 << 10,
|
|
|
|
max_batch_size=max_trt_batch_size,
|
|
|
|
min_subgraph_size=3,
|
|
|
|
precision_mode=trt_precision_mode,
|
|
|
|
use_static=False,
|
|
|
|
use_calib_mode=False)
|
|
|
|
else:
|
|
|
|
config.disable_gpu()
|
|
|
|
config.set_cpu_math_library_num_threads(cpu_thread_num)
|
|
|
|
if use_mkl:
|
|
|
|
if self._model.__class__.__name__ == 'MaskRCNN':
|
|
|
|
logging.warning(
|
|
|
|
"MaskRCNN does not support MKL-DNN, MKL-DNN is forcibly disabled"
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
# Cache 10 different shapes for mkldnn to avoid memory leak.
|
|
|
|
config.set_mkldnn_cache_capacity(10)
|
|
|
|
config.enable_mkldnn()
|
|
|
|
config.set_cpu_math_library_num_threads(mkl_thread_num)
|
|
|
|
except Exception as e:
|
|
|
|
logging.warning(
|
|
|
|
"The current environment does not support MKL-DNN, MKL-DNN is disabled."
|
|
|
|
)
|
|
|
|
pass
|
|
|
|
|
|
|
|
if not use_glog:
|
|
|
|
config.disable_glog_info()
|
|
|
|
if memory_optimize:
|
|
|
|
config.enable_memory_optim()
|
|
|
|
config.switch_use_feed_fetch_ops(False)
|
|
|
|
predictor = create_predictor(config)
|
|
|
|
return predictor
|
|
|
|
|
|
|
|
def preprocess(self, images, transforms):
|
|
|
|
preprocessed_samples = self._model.preprocess(
|
|
|
|
images, transforms, to_tensor=False)
|
|
|
|
if self.model_type == 'classifier':
|
|
|
|
preprocessed_samples = {'image': preprocessed_samples[0]}
|
|
|
|
elif self.model_type == 'segmenter':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'ori_shape': preprocessed_samples[1]
|
|
|
|
}
|
|
|
|
elif self.model_type == 'detector':
|
|
|
|
pass
|
|
|
|
elif self.model_type == 'change_detector':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'image2': preprocessed_samples[1],
|
|
|
|
'ori_shape': preprocessed_samples[2]
|
|
|
|
}
|
|
|
|
elif self.model_type == 'restorer':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'tar_shape': preprocessed_samples[1]
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"Invalid model type {}".format(self.model_type), exit=True)
|
|
|
|
return preprocessed_samples
|
|
|
|
|
|
|
|
def postprocess(self,
|
|
|
|
net_outputs,
|
|
|
|
topk=1,
|
|
|
|
ori_shape=None,
|
|
|
|
tar_shape=None,
|
|
|
|
transforms=None):
|
|
|
|
if self.model_type == 'classifier':
|
|
|
|
true_topk = min(self._model.num_classes, topk)
|
|
|
|
if self._model.postprocess is None:
|
|
|
|
self._model.build_postprocess_from_labels(topk)
|
|
|
|
# XXX: Convert ndarray to tensor as self._model.postprocess requires
|
|
|
|
assert len(net_outputs) == 1
|
|
|
|
net_outputs = paddle.to_tensor(net_outputs[0])
|
|
|
|
outputs = self._model.postprocess(net_outputs)
|
|
|
|
class_ids = map(itemgetter('class_ids'), outputs)
|
|
|
|
scores = map(itemgetter('scores'), outputs)
|
|
|
|
label_names = map(itemgetter('label_names'), outputs)
|
|
|
|
preds = [{
|
|
|
|
'class_ids_map': l,
|
|
|
|
'scores_map': s,
|
|
|
|
'label_names_map': n,
|
|
|
|
} for l, s, n in zip(class_ids, scores, label_names)]
|
|
|
|
elif self.model_type in ('segmenter', 'change_detector'):
|
|
|
|
label_map, score_map = self._model.postprocess(
|
|
|
|
net_outputs,
|
|
|
|
batch_origin_shape=ori_shape,
|
|
|
|
transforms=transforms.transforms)
|
|
|
|
preds = [{
|
|
|
|
'label_map': l,
|
|
|
|
'score_map': s
|
|
|
|
} for l, s in zip(label_map, score_map)]
|
|
|
|
elif self.model_type == 'detector':
|
|
|
|
net_outputs = {
|
|
|
|
k: v
|
|
|
|
for k, v in zip(['bbox', 'bbox_num', 'mask'], net_outputs)
|
|
|
|
}
|
|
|
|
preds = self._model.postprocess(net_outputs)
|
|
|
|
elif self.model_type == 'restorer':
|
|
|
|
res_maps = self._model.postprocess(
|
|
|
|
net_outputs[0],
|
|
|
|
batch_tar_shape=tar_shape,
|
|
|
|
transforms=transforms.transforms)
|
|
|
|
preds = [{'res_map': res_map} for res_map in res_maps]
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"Invalid model type {}.".format(self.model_type), exit=True)
|
|
|
|
|
|
|
|
return preds
|
|
|
|
|
|
|
|
def raw_predict(self, inputs):
|
|
|
|
"""
|
|
|
|
Predict according to preprocessed inputs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
inputs (dict): Preprocessed inputs.
|
|
|
|
"""
|
|
|
|
|
|
|
|
input_names = self.predictor.get_input_names()
|
|
|
|
for name in input_names:
|
|
|
|
input_tensor = self.predictor.get_input_handle(name)
|
|
|
|
input_tensor.copy_from_cpu(inputs[name])
|
|
|
|
|
|
|
|
self.predictor.run()
|
|
|
|
output_names = self.predictor.get_output_names()
|
|
|
|
net_outputs = list()
|
|
|
|
for name in output_names:
|
|
|
|
output_tensor = self.predictor.get_output_handle(name)
|
|
|
|
net_outputs.append(output_tensor.copy_to_cpu())
|
|
|
|
|
|
|
|
return net_outputs
|
|
|
|
|
|
|
|
def _run(self, images, topk=1, transforms=None):
|
|
|
|
self.timer.preprocess_time_s.start()
|
|
|
|
preprocessed_input = self.preprocess(images, transforms)
|
|
|
|
self.timer.preprocess_time_s.end(iter_num=len(images))
|
|
|
|
|
|
|
|
self.timer.inference_time_s.start()
|
|
|
|
net_outputs = self.raw_predict(preprocessed_input)
|
|
|
|
self.timer.inference_time_s.end(iter_num=1)
|
|
|
|
|
|
|
|
self.timer.postprocess_time_s.start()
|
|
|
|
results = self.postprocess(
|
|
|
|
net_outputs,
|
|
|
|
topk,
|
|
|
|
ori_shape=preprocessed_input.get('ori_shape', None),
|
|
|
|
tar_shape=preprocessed_input.get('tar_shape', None),
|
|
|
|
transforms=transforms)
|
|
|
|
self.timer.postprocess_time_s.end(iter_num=len(images))
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
def predict(self,
|
|
|
|
img_file,
|
|
|
|
topk=1,
|
|
|
|
transforms=None,
|
|
|
|
warmup_iters=0,
|
|
|
|
repeats=1,
|
|
|
|
quiet=False):
|
|
|
|
"""
|
|
|
|
Do inference.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file(list[str|tuple|np.ndarray] | str | tuple | np.ndarray): For scene classification, image restoration,
|
|
|
|
object detection and semantic segmentation tasks, `img_file` should be either the path of the image to predict,
|
|
|
|
a decoded image (a np.ndarray, which should be consistent with what you get from passing image path to
|
|
|
|
paddlers.transforms.decode_image(..., read_raw=True)), or a list of image paths or decoded images. For change
|
|
|
|
detection tasks, `img_file` should be a tuple of image paths, a tuple of decoded images, or a list of tuples.
|
|
|
|
topk(int, optional): Top-k values to reserve in a classification result. Defaults to 1.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Pipeline of data preprocessing. If None, load transforms
|
|
|
|
from `model.yml`. Defaults to None.
|
|
|
|
warmup_iters (int, optional): Warm-up iterations before measuring the execution time. Defaults to 0.
|
|
|
|
repeats (int, optional): Number of repetitions to evaluate model inference and data processing speed. If greater than
|
|
|
|
1, the reported time consumption is the average of all repeats. Defaults to 1.
|
|
|
|
quiet (bool, optional): If True, do not display the timing information. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if repeats < 1:
|
|
|
|
logging.error("`repeats` must be greater than 1.", exit=True)
|
|
|
|
if transforms is None and not hasattr(self._model, 'test_transforms'):
|
|
|
|
raise ValueError("Transforms need to be defined, now is None.")
|
|
|
|
if transforms is None:
|
|
|
|
transforms = self._model.test_transforms
|
|
|
|
if isinstance(img_file, tuple) and len(img_file) != 2:
|
|
|
|
raise ValueError(
|
|
|
|
f"A change detection model accepts exactly two input images, but there are {len(img_file)}."
|
|
|
|
)
|
|
|
|
if isinstance(img_file, (str, np.ndarray, tuple)):
|
|
|
|
images = [img_file]
|
|
|
|
else:
|
|
|
|
images = img_file
|
|
|
|
|
|
|
|
for _ in range(warmup_iters):
|
|
|
|
self._run(images=images, topk=topk, transforms=transforms)
|
|
|
|
self.timer.reset()
|
|
|
|
|
|
|
|
for _ in range(repeats):
|
|
|
|
results = self._run(images=images, topk=topk, transforms=transforms)
|
|
|
|
|
|
|
|
self.timer.repeats = repeats
|
|
|
|
self.timer.img_num = len(images)
|
|
|
|
if not quiet:
|
|
|
|
self.timer.info(average=True)
|
|
|
|
|
|
|
|
if isinstance(img_file, (str, np.ndarray, tuple)):
|
|
|
|
results = results[0]
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
def slider_predict(self,
|
|
|
|
img_file,
|
|
|
|
save_dir,
|
|
|
|
block_size,
|
|
|
|
overlap=36,
|
|
|
|
transforms=None,
|
|
|
|
invalid_value=255,
|
|
|
|
merge_strategy='keep_last',
|
|
|
|
batch_size=1,
|
|
|
|
quiet=False):
|
|
|
|
"""
|
|
|
|
Do inference using sliding windows. Only semantic segmentation and change detection models are supported in the
|
|
|
|
sliding-predicting mode.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file(list[str|tuple|np.ndarray] | str | tuple | np.ndarray): For semantic segmentation tasks, `img_file`
|
|
|
|
should be either the path of the image to predict, a decoded image (a np.ndarray, which should be
|
|
|
|
consistent with what you get from passing image path to paddlers.transforms.decode_image(..., read_raw=True)),
|
|
|
|
or a list of image paths or decoded images. For change detection tasks, `img_file` should be a tuple of
|
|
|
|
image paths, a tuple of decoded images, or a list of tuples.
|
|
|
|
save_dir (str): Directory that contains saved geotiff file.
|
|
|
|
block_size (list[int] | tuple[int] | int): Size of block. If `block_size` is a list or tuple, it should be in
|
|
|
|
(W, H) format.
|
|
|
|
overlap (list[int] | tuple[int] | int, optional): Overlap between two blocks. If `overlap` is a list or tuple,
|
|
|
|
it should be in (W, H) format. Defaults to 36.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Pipeline of data preprocessing. If None, load transforms
|
|
|
|
from `model.yml`. Defaults to None.
|
|
|
|
invalid_value (int, optional): Value that marks invalid pixels in output image. Defaults to 255.
|
|
|
|
merge_strategy (str, optional): Strategy to merge overlapping blocks. Choices are
|
|
|
|
{'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last' means keeping the values of the first and
|
|
|
|
the last block in traversal order, respectively. 'accum' means determining the class of an overlapping pixel
|
|
|
|
according to accumulated probabilities. Defaults to 'keep_last'.
|
|
|
|
batch_size (int, optional): Batch size used in inference. Defaults to 1.
|
|
|
|
quiet (bool, optional): If True, disable the progress bar. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.model_type not in ('segmenter', 'change_detector'):
|
|
|
|
raise RuntimeError(
|
|
|
|
"Model type is {}, which does not support inference with sliding windows.".
|
|
|
|
format(self.model_type))
|
|
|
|
|
|
|
|
slider_predict(
|
|
|
|
partial(
|
|
|
|
self.predict, quiet=True),
|
|
|
|
img_file,
|
|
|
|
save_dir,
|
|
|
|
block_size,
|
|
|
|
overlap,
|
|
|
|
transforms,
|
|
|
|
invalid_value,
|
|
|
|
merge_strategy,
|
|
|
|
batch_size,
|
|
|
|
not quiet)
|
|
|
|
|
|
|
|
def batch_predict(self, image_list, **params):
|
|
|
|
return self.predict(img_file=image_list, **params)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def model_type(self):
|
|
|
|
return self._model.model_type
|