You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
1.8 KiB
65 lines
1.8 KiB
3 years ago
|
import os
|
||
|
import paddlers as pdrs
|
||
|
from paddlers import transforms as T
|
||
|
|
||
|
# download dataset
|
||
|
data_dir = 'sar_ship_1'
|
||
|
if not os.path.exists(data_dir):
|
||
|
dataset_url = 'https://paddleseg.bj.bcebos.com/dataset/sar_ship_1.tar.gz'
|
||
|
pdrs.utils.download_and_decompress(dataset_url, path='./')
|
||
|
|
||
|
# define transforms
|
||
|
train_transforms = T.Compose([
|
||
|
T.RandomDistort(),
|
||
3 years ago
|
T.RandomExpand(),
|
||
3 years ago
|
T.RandomCrop(),
|
||
|
T.RandomHorizontalFlip(),
|
||
|
T.BatchRandomResize(
|
||
|
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
|
||
|
interp='RANDOM'),
|
||
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||
|
])
|
||
|
|
||
|
eval_transforms = T.Compose([
|
||
3 years ago
|
T.Resize(target_size=608, interp='CUBIC'),
|
||
|
T.Normalize(
|
||
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||
3 years ago
|
])
|
||
|
|
||
|
# define dataset
|
||
|
train_file_list = os.path.join(data_dir, 'train.txt')
|
||
|
val_file_list = os.path.join(data_dir, 'valid.txt')
|
||
|
label_file_list = os.path.join(data_dir, 'labels.txt')
|
||
|
train_dataset = pdrs.datasets.VOCDetection(
|
||
|
data_dir=data_dir,
|
||
|
file_list=train_file_list,
|
||
|
label_list=label_file_list,
|
||
|
transforms=train_transforms,
|
||
|
shuffle=True)
|
||
|
|
||
|
eval_dataset = pdrs.datasets.VOCDetection(
|
||
|
data_dir=data_dir,
|
||
|
file_list=train_file_list,
|
||
|
label_list=label_file_list,
|
||
|
transforms=eval_transforms,
|
||
|
shuffle=False)
|
||
|
|
||
|
# define models
|
||
|
num_classes = len(train_dataset.labels)
|
||
3 years ago
|
model = pdrs.tasks.FasterRCNN(num_classes=num_classes)
|
||
3 years ago
|
|
||
|
# train
|
||
|
model.train(
|
||
|
num_epochs=60,
|
||
|
train_dataset=train_dataset,
|
||
|
train_batch_size=2,
|
||
|
eval_dataset=eval_dataset,
|
||
|
pretrain_weights='COCO',
|
||
|
learning_rate=0.005 / 12,
|
||
|
warmup_steps=10,
|
||
|
warmup_start_lr=0.0,
|
||
|
save_interval_epochs=5,
|
||
|
lr_decay_epochs=[20, 40],
|
||
|
save_dir='output/faster_rcnn_sar_ship',
|
||
|
use_vdl=True)
|