|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
import time
|
|
|
|
import math
|
|
|
|
import imghdr
|
|
|
|
import chardet
|
|
|
|
import json
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from . import logging
|
|
|
|
import platform
|
|
|
|
import paddlers
|
|
|
|
|
|
|
|
|
|
|
|
def seconds_to_hms(seconds):
|
|
|
|
h = math.floor(seconds / 3600)
|
|
|
|
m = math.floor((seconds - h * 3600) / 60)
|
|
|
|
s = int(seconds - h * 3600 - m * 60)
|
|
|
|
hms_str = "{}:{}:{}".format(h, m, s)
|
|
|
|
return hms_str
|
|
|
|
|
|
|
|
|
|
|
|
def get_encoding(path):
|
|
|
|
f = open(path, 'rb')
|
|
|
|
data = f.read()
|
|
|
|
file_encoding = chardet.detect(data).get('encoding')
|
|
|
|
f.close()
|
|
|
|
return file_encoding
|
|
|
|
|
|
|
|
|
|
|
|
def get_single_card_bs(batch_size):
|
|
|
|
card_num = paddlers.env_info['num']
|
|
|
|
place = paddlers.env_info['place']
|
|
|
|
if batch_size % card_num == 0:
|
|
|
|
return int(batch_size // card_num)
|
|
|
|
elif batch_size == 1:
|
|
|
|
# Evaluation of detection task only supports single card with batch size 1
|
|
|
|
return batch_size
|
|
|
|
else:
|
|
|
|
raise ValueError("Please support correct batch_size, \
|
|
|
|
which can be divided by available cards({}) in {}"
|
|
|
|
.format(card_num, place))
|
|
|
|
|
|
|
|
|
|
|
|
def dict2str(dict_input):
|
|
|
|
out = ''
|
|
|
|
for k, v in dict_input.items():
|
|
|
|
try:
|
|
|
|
v = '{:8.6f}'.format(float(v))
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
out = out + '{}={}, '.format(k, v)
|
|
|
|
return out.strip(', ')
|
|
|
|
|
|
|
|
|
|
|
|
def norm_path(path):
|
|
|
|
win_sep = "\\"
|
|
|
|
other_sep = "/"
|
|
|
|
if platform.system() == "Windows":
|
|
|
|
path = win_sep.join(path.split(other_sep))
|
|
|
|
else:
|
|
|
|
path = other_sep.join(path.split(win_sep))
|
|
|
|
return path
|
|
|
|
|
|
|
|
|
|
|
|
def is_pic(img_path):
|
|
|
|
valid_suffix = [
|
|
|
|
'JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png', 'npy'
|
|
|
|
]
|
|
|
|
suffix = img_path.split('.')[-1]
|
|
|
|
if suffix in valid_suffix:
|
|
|
|
return True
|
|
|
|
img_format = imghdr.what(img_path)
|
|
|
|
_, ext = osp.splitext(img_path)
|
|
|
|
if img_format == 'tiff' or ext == '.img':
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
class MyEncoder(json.JSONEncoder):
|
|
|
|
def default(self, obj):
|
|
|
|
if isinstance(obj, np.integer):
|
|
|
|
return int(obj)
|
|
|
|
elif isinstance(obj, np.floating):
|
|
|
|
return float(obj)
|
|
|
|
elif isinstance(obj, np.ndarray):
|
|
|
|
return obj.tolist()
|
|
|
|
else:
|
|
|
|
return super(MyEncoder, self).default(obj)
|
|
|
|
|
|
|
|
|
|
|
|
class EarlyStop:
|
|
|
|
def __init__(self, patience, thresh):
|
|
|
|
self.patience = patience
|
|
|
|
self.counter = 0
|
|
|
|
self.score = None
|
|
|
|
self.max = 0
|
|
|
|
self.thresh = thresh
|
|
|
|
if patience < 1:
|
|
|
|
raise ValueError("Argument patience should be a positive integer.")
|
|
|
|
|
|
|
|
def __call__(self, current_score):
|
|
|
|
if self.score is None:
|
|
|
|
self.score = current_score
|
|
|
|
return False
|
|
|
|
elif current_score > self.max:
|
|
|
|
self.counter = 0
|
|
|
|
self.score = current_score
|
|
|
|
self.max = current_score
|
|
|
|
return False
|
|
|
|
else:
|
|
|
|
if (abs(self.score - current_score) < self.thresh or
|
|
|
|
current_score < self.score):
|
|
|
|
self.counter += 1
|
|
|
|
self.score = current_score
|
|
|
|
logging.debug("EarlyStopping: %i / %i" %
|
|
|
|
(self.counter, self.patience))
|
|
|
|
if self.counter >= self.patience:
|
|
|
|
logging.info("EarlyStopping: Stop training")
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
else:
|
|
|
|
self.counter = 0
|
|
|
|
self.score = current_score
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
class DisablePrint(object):
|
|
|
|
def __enter__(self):
|
|
|
|
self._original_stdout = sys.stdout
|
|
|
|
sys.stdout = open(os.devnull, 'w')
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
|
sys.stdout.close()
|
|
|
|
sys.stdout = self._original_stdout
|
|
|
|
|
|
|
|
|
|
|
|
class Times(object):
|
|
|
|
def __init__(self):
|
|
|
|
self.time = 0.
|
|
|
|
# Start time
|
|
|
|
self.st = 0.
|
|
|
|
# End time
|
|
|
|
self.et = 0.
|
|
|
|
|
|
|
|
def start(self):
|
|
|
|
self.st = time.time()
|
|
|
|
|
|
|
|
def end(self, iter_num=1, accumulative=True):
|
|
|
|
self.et = time.time()
|
|
|
|
if accumulative:
|
|
|
|
self.time += (self.et - self.st) / iter_num
|
|
|
|
else:
|
|
|
|
self.time = (self.et - self.st) / iter_num
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self.time = 0.
|
|
|
|
self.st = 0.
|
|
|
|
self.et = 0.
|
|
|
|
|
|
|
|
def value(self):
|
|
|
|
return round(self.time, 4)
|
|
|
|
|
|
|
|
|
|
|
|
class Timer(Times):
|
|
|
|
def __init__(self):
|
|
|
|
super(Timer, self).__init__()
|
|
|
|
self.preprocess_time_s = Times()
|
|
|
|
self.inference_time_s = Times()
|
|
|
|
self.postprocess_time_s = Times()
|
|
|
|
self.img_num = 0
|
|
|
|
self.repeats = 0
|
|
|
|
|
|
|
|
def info(self, average=False):
|
|
|
|
total_time = self.preprocess_time_s.value(
|
|
|
|
) * self.img_num + self.inference_time_s.value(
|
|
|
|
) + self.postprocess_time_s.value() * self.img_num
|
|
|
|
total_time = round(total_time, 4)
|
|
|
|
print("------------------ Inference Time Info ----------------------")
|
|
|
|
print("total_time(ms): {}, img_num: {}, batch_size: {}".format(
|
|
|
|
total_time * 1000, self.img_num, self.img_num))
|
|
|
|
preprocess_time = round(
|
|
|
|
self.preprocess_time_s.value() / self.repeats,
|
|
|
|
4) if average else self.preprocess_time_s.value()
|
|
|
|
postprocess_time = round(
|
|
|
|
self.postprocess_time_s.value() / self.repeats,
|
|
|
|
4) if average else self.postprocess_time_s.value()
|
|
|
|
inference_time = round(self.inference_time_s.value() / self.repeats,
|
|
|
|
4) if average else self.inference_time_s.value()
|
|
|
|
|
|
|
|
average_latency = total_time / self.repeats
|
|
|
|
print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
|
|
|
|
average_latency * 1000, 1 / average_latency))
|
|
|
|
print("preprocess_time_per_im(ms): {:.2f}, "
|
|
|
|
"inference_time_per_batch(ms): {:.2f}, "
|
|
|
|
"postprocess_time_per_im(ms): {:.2f}".format(
|
|
|
|
preprocess_time * 1000, inference_time * 1000,
|
|
|
|
postprocess_time * 1000))
|
|
|
|
|
|
|
|
def report(self, average=False):
|
|
|
|
dic = {}
|
|
|
|
dic['preprocess_time_s'] = round(
|
|
|
|
self.preprocess_time_s.value() / self.repeats,
|
|
|
|
4) if average else self.preprocess_time_s.value()
|
|
|
|
dic['postprocess_time_s'] = round(
|
|
|
|
self.postprocess_time_s.value() / self.repeats,
|
|
|
|
4) if average else self.postprocess_time_s.value()
|
|
|
|
dic['inference_time_s'] = round(
|
|
|
|
self.inference_time_s.value() / self.repeats,
|
|
|
|
4) if average else self.inference_time_s.value()
|
|
|
|
dic['img_num'] = self.img_num
|
|
|
|
total_time = self.preprocess_time_s.value(
|
|
|
|
) + self.inference_time_s.value() + self.postprocess_time_s.value()
|
|
|
|
dic['total_time_s'] = round(total_time, 4)
|
|
|
|
dic['batch_size'] = self.img_num / self.repeats
|
|
|
|
return dic
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self.preprocess_time_s.reset()
|
|
|
|
self.inference_time_s.reset()
|
|
|
|
self.postprocess_time_s.reset()
|
|
|
|
self.img_num = 0
|
|
|
|
self.repeats = 0
|