|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
from .blocks import Conv1x1, BasicConv
|
|
|
|
|
|
|
|
|
|
|
|
class ChannelAttention(nn.Layer):
|
|
|
|
"""
|
|
|
|
The channel attention module implementation based on PaddlePaddle.
|
|
|
|
|
|
|
|
The original article refers to
|
|
|
|
Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module"
|
|
|
|
(https://arxiv.org/abs/1807.06521).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_ch (int): Number of channels of the input features.
|
|
|
|
ratio (int, optional): Channel reduction ratio. Default: 8.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_ch, ratio=8):
|
|
|
|
super(ChannelAttention, self).__init__()
|
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2D(1)
|
|
|
|
self.max_pool = nn.AdaptiveMaxPool2D(1)
|
|
|
|
self.fc1 = Conv1x1(in_ch, in_ch // ratio, bias=False, act=True)
|
|
|
|
self.fc2 = Conv1x1(in_ch // ratio, in_ch, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
avg_out = self.fc2(self.fc1(self.avg_pool(x)))
|
|
|
|
max_out = self.fc2(self.fc1(self.max_pool(x)))
|
|
|
|
out = avg_out + max_out
|
|
|
|
return F.sigmoid(out)
|
|
|
|
|
|
|
|
|
|
|
|
class SpatialAttention(nn.Layer):
|
|
|
|
"""
|
|
|
|
The spatial attention module implementation based on PaddlePaddle.
|
|
|
|
|
|
|
|
The original article refers to
|
|
|
|
Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module"
|
|
|
|
(https://arxiv.org/abs/1807.06521).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
kernel_size (int, optional): Size of the convolutional kernel.
|
|
|
|
Default: 7.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, kernel_size=7):
|
|
|
|
super(SpatialAttention, self).__init__()
|
|
|
|
self.conv = BasicConv(2, 1, kernel_size, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
avg_out = paddle.mean(x, axis=1, keepdim=True)
|
|
|
|
max_out = paddle.max(x, axis=1, keepdim=True)
|
|
|
|
x = paddle.concat([avg_out, max_out], axis=1)
|
|
|
|
x = self.conv(x)
|
|
|
|
return F.sigmoid(x)
|
|
|
|
|
|
|
|
|
|
|
|
class CBAM(nn.Layer):
|
|
|
|
"""
|
|
|
|
The CBAM implementation based on PaddlePaddle.
|
|
|
|
|
|
|
|
The original article refers to
|
|
|
|
Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module"
|
|
|
|
(https://arxiv.org/abs/1807.06521).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_ch (int): Number of channels of the input features.
|
|
|
|
ratio (int, optional): Channel reduction ratio for the channel
|
|
|
|
attention module. Default: 8.
|
|
|
|
kernel_size (int, optional): Size of the convolutional kernel used in
|
|
|
|
the spatial attention module. Default: 7.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_ch, ratio=8, kernel_size=7):
|
|
|
|
super(CBAM, self).__init__()
|
|
|
|
self.ca = ChannelAttention(in_ch, ratio=ratio)
|
|
|
|
self.sa = SpatialAttention(kernel_size=kernel_size)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
y = self.ca(x) * x
|
|
|
|
y = self.sa(y) * y
|
|
|
|
return y
|