You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
64 lines
2.3 KiB
64 lines
2.3 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class ExponentialMovingAverage():
|
||
|
"""
|
||
|
Exponential Moving Average
|
||
|
Code was heavily based on https://github.com/Wanger-SJTU/SegToolbox.Pytorch/blob/master/lib/utils/ema.py
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model, decay, thres_steps=True):
|
||
|
self._model = model
|
||
|
self._decay = decay
|
||
|
self._thres_steps = thres_steps
|
||
|
self._shadow = {}
|
||
|
self._backup = {}
|
||
|
|
||
|
def register(self):
|
||
|
self._update_step = 0
|
||
|
for name, param in self._model.named_parameters():
|
||
|
if param.stop_gradient is False:
|
||
|
self._shadow[name] = param.numpy().copy()
|
||
|
|
||
|
def update(self):
|
||
|
decay = min(self._decay, (1 + self._update_step) / (
|
||
|
10 + self._update_step)) if self._thres_steps else self._decay
|
||
|
for name, param in self._model.named_parameters():
|
||
|
if param.stop_gradient is False:
|
||
|
assert name in self._shadow
|
||
|
new_val = np.array(param.numpy().copy())
|
||
|
old_val = np.array(self._shadow[name])
|
||
|
new_average = decay * old_val + (1 - decay) * new_val
|
||
|
self._shadow[name] = new_average
|
||
|
self._update_step += 1
|
||
|
return decay
|
||
|
|
||
|
def apply(self):
|
||
|
for name, param in self._model.named_parameters():
|
||
|
if param.stop_gradient is False:
|
||
|
assert name in self._shadow
|
||
|
self._backup[name] = np.array(param.numpy().copy())
|
||
|
param.set_value(np.array(self._shadow[name]))
|
||
|
|
||
|
def restore(self):
|
||
|
for name, param in self._model.named_parameters():
|
||
|
if param.stop_gradient is False:
|
||
|
assert name in self._backup
|
||
|
param.set_value(self._backup[name])
|
||
|
self._backup = {}
|