You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.6 KiB
140 lines
4.6 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import errno
|
||
|
import os
|
||
|
import re
|
||
|
import shutil
|
||
|
import tempfile
|
||
|
|
||
|
import paddle
|
||
|
|
||
|
from ppcls.utils import logger
|
||
|
|
||
|
__all__ = ['init_model', 'save_model']
|
||
|
|
||
|
|
||
|
def _mkdir_if_not_exist(path):
|
||
|
"""
|
||
|
mkdir if not exists, ignore the exception when multiprocess mkdir together
|
||
|
"""
|
||
|
if not os.path.exists(path):
|
||
|
try:
|
||
|
os.makedirs(path)
|
||
|
except OSError as e:
|
||
|
if e.errno == errno.EEXIST and os.path.isdir(path):
|
||
|
logger.warning(
|
||
|
'be happy if some process has already created {}'.format(
|
||
|
path))
|
||
|
else:
|
||
|
raise OSError('Failed to mkdir {}'.format(path))
|
||
|
|
||
|
|
||
|
def _load_state(path):
|
||
|
if os.path.exists(path + '.pdopt'):
|
||
|
# XXX another hack to ignore the optimizer state
|
||
|
tmp = tempfile.mkdtemp()
|
||
|
dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
|
||
|
shutil.copy(path + '.pdparams', dst + '.pdparams')
|
||
|
state = paddle.static.load_program_state(dst)
|
||
|
shutil.rmtree(tmp)
|
||
|
else:
|
||
|
state = paddle.static.load_program_state(path)
|
||
|
return state
|
||
|
|
||
|
|
||
|
def load_params(exe, prog, path, ignore_params=None):
|
||
|
"""
|
||
|
Load model from the given path.
|
||
|
Args:
|
||
|
exe (fluid.Executor): The fluid.Executor object.
|
||
|
prog (fluid.Program): load weight to which Program object.
|
||
|
path (string): URL string or loca model path.
|
||
|
ignore_params (list): ignore variable to load when finetuning.
|
||
|
It can be specified by finetune_exclude_pretrained_params
|
||
|
and the usage can refer to the document
|
||
|
docs/advanced_tutorials/TRANSFER_LEARNING.md
|
||
|
"""
|
||
|
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
|
||
|
raise ValueError("Model pretrain path {} does not "
|
||
|
"exists.".format(path))
|
||
|
|
||
|
logger.info("Loading parameters from {}...".format(path))
|
||
|
|
||
|
ignore_set = set()
|
||
|
state = _load_state(path)
|
||
|
|
||
|
# ignore the parameter which mismatch the shape
|
||
|
# between the model and pretrain weight.
|
||
|
all_var_shape = {}
|
||
|
for block in prog.blocks:
|
||
|
for param in block.all_parameters():
|
||
|
all_var_shape[param.name] = param.shape
|
||
|
ignore_set.update([
|
||
|
name for name, shape in all_var_shape.items()
|
||
|
if name in state and shape != state[name].shape
|
||
|
])
|
||
|
|
||
|
if ignore_params:
|
||
|
all_var_names = [var.name for var in prog.list_vars()]
|
||
|
ignore_list = filter(
|
||
|
lambda var: any([re.match(name, var) for name in ignore_params]),
|
||
|
all_var_names)
|
||
|
ignore_set.update(list(ignore_list))
|
||
|
|
||
|
if len(ignore_set) > 0:
|
||
|
for k in ignore_set:
|
||
|
if k in state:
|
||
|
logger.warning(
|
||
|
'variable {} is already excluded automatically'.format(k))
|
||
|
del state[k]
|
||
|
|
||
|
paddle.static.set_program_state(prog, state)
|
||
|
|
||
|
|
||
|
def init_model(config, program, exe):
|
||
|
"""
|
||
|
load model from checkpoint or pretrained_model
|
||
|
"""
|
||
|
checkpoints = config.get('checkpoints')
|
||
|
if checkpoints:
|
||
|
paddle.static.load(program, checkpoints, exe)
|
||
|
logger.info("Finish initing model from {}".format(checkpoints))
|
||
|
return
|
||
|
|
||
|
pretrained_model = config.get('pretrained_model')
|
||
|
if pretrained_model:
|
||
|
if not isinstance(pretrained_model, list):
|
||
|
pretrained_model = [pretrained_model]
|
||
|
for pretrain in pretrained_model:
|
||
|
load_params(exe, program, pretrain)
|
||
|
logger.info("Finish initing model from {}".format(pretrained_model))
|
||
|
|
||
|
|
||
|
def save_model(program, model_path, epoch_id, prefix='ppcls'):
|
||
|
"""
|
||
|
save model to the target path
|
||
|
"""
|
||
|
if paddle.distributed.get_rank() != 0:
|
||
|
return
|
||
|
model_path = os.path.join(model_path, str(epoch_id))
|
||
|
_mkdir_if_not_exist(model_path)
|
||
|
model_prefix = os.path.join(model_path, prefix)
|
||
|
paddle.static.save(program, model_prefix)
|
||
|
logger.info("Already save model in {}".format(model_path))
|