You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

120 lines
5.2 KiB

3 years ago
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
@File Description:
# json数据集划分,可以通过val_split_rate、val_split_num控制划分比例或个数, keep_val_inTrain可以设定是否在train中保留val相关信息
python ./coco_tools/json_Split.py \
--json_all_path=./annotations/instances_val2017.json \
--json_train_path=./instances_val2017_train.json \
--json_val_path=./instances_val2017_val.json
'''
import json
import argparse
3 years ago
import pandas as pd
def get_annno(df_img_split, df_anno):
df_merge = pd.merge(df_img_split, df_anno, on="image_id")
df_anno_split = df_merge[df_anno.columns.to_list()]
df_anno_split = df_anno_split.sort_values(by='id')
return df_anno_split
def js_split(js_all_path, js_train_path, js_val_path, val_split_rate, val_split_num, keep_val_inTrain,
image_keyname, anno_keyname):
print('Split'.center(100,'-'))
print()
print('json read...\n')
with open(js_all_path, 'r') as load_f:
data = json.load(load_f)
df_anno = pd.DataFrame(data[anno_keyname])
df_img = pd.DataFrame(data[image_keyname])
df_img = df_img.rename(columns={"id": "image_id"})
df_img = df_img.sample(frac=1, random_state=0)
if val_split_num is None:
val_split_num = int(val_split_rate*len(df_img))
if keep_val_inTrain:
df_img_train = df_img
df_img_val = df_img[: val_split_num]
df_anno_train = df_anno
df_anno_val = get_annno(df_img_val, df_anno)
else:
df_img_train = df_img[val_split_num:]
df_img_val = df_img[: val_split_num]
df_anno_train = get_annno(df_img_train, df_anno)
df_anno_val = get_annno(df_img_val, df_anno)
df_img_train = df_img_train.rename(columns={"image_id": "id"}).sort_values(by='id')
df_img_val =df_img_val.rename(columns={"image_id": "id"}).sort_values(by='id')
data[image_keyname] = json.loads(df_img_train.to_json(orient='records'))
data[anno_keyname] = json.loads(df_anno_train.to_json(orient='records'))
str_json = json.dumps(data, ensure_ascii=False)
with open(js_train_path, 'w', encoding='utf-8') as file_obj:
file_obj.write(str_json)
data[image_keyname] = json.loads(df_img_val.to_json(orient='records'))
data[anno_keyname] = json.loads(df_anno_val.to_json(orient='records'))
str_json = json.dumps(data, ensure_ascii=False)
with open(js_val_path, 'w', encoding='utf-8') as file_obj:
file_obj.write(str_json)
print('image total %d, train %d, val %d'%(len(df_img), len(df_img_train), len(df_img_val)))
print('anno total %d, train %d, val %d'%(len(df_anno), len(df_anno_train), len(df_anno_val)))
return df_img
def get_args():
parser = argparse.ArgumentParser(description='Json Merge')
# parameters
parser.add_argument('--json_all_path', type=str,
help='json path to split')
parser.add_argument('--json_train_path', type=str,
help='json path to save the split result -- train part')
parser.add_argument('--json_val_path', type=str,
help='json path to save the split result -- val part')
parser.add_argument('--val_split_rate', type=float, default=0.1,
help='val image number rate in total image, default is 0.1; if val_split_num is set, val_split_rate will not work')
parser.add_argument('--val_split_num', type=int, default=None,
help='val image number in total image, default is None; if val_split_num is set, val_split_rate will not work')
parser.add_argument('--keep_val_inTrain', type=bool, default=False,
help='if true, val part will be in train as well; which means that the content of json_train_path is the same as the content of json_all_path')
parser.add_argument('--image_keyname', type=str, default='images',
help='image key name in json, default images')
parser.add_argument('--anno_keyname', type=str, default='annotations',
help='annotation key name in json, default annotations')
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
help='Args_show(default: True), if True, show args info')
args = parser.parse_args()
if args.Args_show:
print('Args'.center(100,'-'))
for k, v in vars(args).items():
print('%s = %s' % (k, v))
print()
return args
if __name__ == '__main__':
args = get_args()
js_split(args.json_all_path,args.json_train_path,args.json_val_path, args.val_split_rate, args.val_split_num,
args.keep_val_inTrain, args.image_keyname, args.anno_keyname)