You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
1.8 KiB
55 lines
1.8 KiB
2 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddlers
|
||
|
from rs_models.test_model import TestModel
|
||
|
|
||
|
|
||
|
class TestSegModel(TestModel):
|
||
|
DEFAULT_HW = (512, 512)
|
||
|
|
||
|
def check_output(self, output, target):
|
||
|
self.assertIsInstance(output, list)
|
||
|
self.check_output_equal(len(output), len(target))
|
||
|
for o, t in zip(output, target):
|
||
|
o = o.numpy()
|
||
|
self.check_output_equal(o.shape[0], t.shape[0])
|
||
|
self.check_output_equal(len(o.shape), 4)
|
||
|
self.check_output_equal(o.shape[2:], t.shape[2:])
|
||
|
|
||
|
def set_inputs(self):
|
||
|
def _gen_data(specs):
|
||
|
for spec in specs:
|
||
|
c = spec.get('in_channels', 3)
|
||
|
yield self.get_randn_tensor(c)
|
||
|
|
||
|
self.inputs = _gen_data(self.specs)
|
||
|
|
||
|
def set_targets(self):
|
||
|
def _gen_data(specs):
|
||
|
for spec in specs:
|
||
|
c = spec.get('num_classes', 2)
|
||
|
yield [self.get_zeros_array(c)]
|
||
|
|
||
|
self.targets = _gen_data(self.specs)
|
||
|
|
||
|
|
||
|
class TestFarSegModel(TestSegModel):
|
||
|
MODEL_CLASS = paddlers.custom_models.seg.FarSeg
|
||
|
|
||
|
def set_specs(self):
|
||
|
self.specs = [
|
||
|
dict(), dict(num_classes=20), dict(encoder_pretrained=False)
|
||
|
]
|