|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from PIL import Image
|
|
|
|
import paddle
|
|
|
|
import paddle.vision.transforms as T
|
|
|
|
from paddle.io import Dataset
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
from .builder import DATASETS
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def data_transform(crop_size):
|
|
|
|
transform_list = [T.RandomCrop(crop_size)]
|
|
|
|
return T.Compose(transform_list)
|
|
|
|
|
|
|
|
|
|
|
|
@DATASETS.register()
|
|
|
|
class LapStyleDataset(Dataset):
|
|
|
|
"""
|
|
|
|
coco2017 dataset for LapStyle model
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, content_root, style_root, load_size, crop_size):
|
|
|
|
super(LapStyleDataset, self).__init__()
|
|
|
|
self.content_root = content_root
|
|
|
|
self.paths = os.listdir(self.content_root)
|
|
|
|
self.style_root = style_root
|
|
|
|
self.load_size = load_size
|
|
|
|
self.crop_size = crop_size
|
|
|
|
self.transform = data_transform(self.crop_size)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
"""Get training sample
|
|
|
|
|
|
|
|
return:
|
|
|
|
ci: content image with shape [C,W,H],
|
|
|
|
si: style image with shape [C,W,H],
|
|
|
|
ci_path: str
|
|
|
|
"""
|
|
|
|
path = self.paths[index]
|
|
|
|
content_img = cv2.imread(os.path.join(self.content_root, path))
|
|
|
|
if content_img.ndim == 2:
|
|
|
|
content_img = cv2.cvtColor(content_img, cv2.COLOR_GRAY2RGB)
|
|
|
|
else:
|
|
|
|
content_img = cv2.cvtColor(content_img, cv2.COLOR_BGR2RGB)
|
|
|
|
content_img = Image.fromarray(content_img)
|
|
|
|
content_img = content_img.resize((self.load_size, self.load_size),
|
|
|
|
Image.BILINEAR)
|
|
|
|
content_img = np.array(content_img)
|
|
|
|
style_img = cv2.imread(self.style_root)
|
|
|
|
style_img = cv2.cvtColor(style_img, cv2.COLOR_BGR2RGB)
|
|
|
|
style_img = Image.fromarray(style_img)
|
|
|
|
style_img = style_img.resize((self.load_size, self.load_size),
|
|
|
|
Image.BILINEAR)
|
|
|
|
style_img = np.array(style_img)
|
|
|
|
content_img = self.transform(content_img)
|
|
|
|
style_img = self.transform(style_img)
|
|
|
|
content_img = self.img(content_img)
|
|
|
|
style_img = self.img(style_img)
|
|
|
|
return {'ci': content_img, 'si': style_img, 'ci_path': path}
|
|
|
|
|
|
|
|
def img(self, img):
|
|
|
|
"""make image with [0,255] and HWC to [0,1] and CHW
|
|
|
|
|
|
|
|
return:
|
|
|
|
img: image with shape [3,W,H] and value [0, 1].
|
|
|
|
"""
|
|
|
|
# [0,255] to [0,1]
|
|
|
|
img = img.astype(np.float32) / 255.
|
|
|
|
# some images have 4 channels
|
|
|
|
if img.shape[2] > 3:
|
|
|
|
img = img[:, :, :3]
|
|
|
|
# HWC to CHW
|
|
|
|
img = np.transpose(img, (2, 0, 1)).astype('float32')
|
|
|
|
return img
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.paths)
|
|
|
|
|
|
|
|
def name(self):
|
|
|
|
return 'LapStyleDataset'
|