You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

69 lines
2.4 KiB

3 years ago
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import paddle
import numbers
import numpy as np
from paddle.distributed import ParallelEnv
from paddle.io import DistributedBatchSampler
from .repeat_dataset import RepeatDataset
from ..utils.registry import Registry, build_from_config
DATASETS = Registry("DATASETS")
def build_dataset(cfg):
name = cfg.pop('name')
if name == 'RepeatDataset':
dataset_ = build_from_config(cfg['dataset'], DATASETS)
dataset = RepeatDataset(dataset_, cfg['times'])
else:
dataset = dataset = DATASETS.get(name)(**cfg)
return dataset
def build_dataloader(cfg, is_train=True, distributed=True):
cfg_ = cfg.copy()
batch_size = cfg_.pop('batch_size', 1)
num_workers = cfg_.pop('num_workers', 0)
use_shared_memory = cfg_.pop('use_shared_memory', True)
dataset = build_dataset(cfg_)
if distributed:
sampler = DistributedBatchSampler(dataset,
batch_size=batch_size,
shuffle=True if is_train else False,
drop_last=True if is_train else False)
dataloader = paddle.io.DataLoader(dataset,
batch_sampler=sampler,
num_workers=num_workers,
use_shared_memory=use_shared_memory)
else:
dataloader = paddle.io.DataLoader(dataset,
batch_size=batch_size,
shuffle=True if is_train else False,
drop_last=True if is_train else False,
use_shared_memory=use_shared_memory,
num_workers=num_workers)
return dataloader