You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

86 lines
3.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import numpy as np
from PIL import Image
import paddle
from ppgan.models.generators import DRNGenerator
from ppgan.utils.download import get_path_from_url
from ppgan.utils.logger import get_logger
from .base_predictor import BasePredictor
REALSR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/DRNSx4.pdparams'
class DRNPredictor(BasePredictor):
def __init__(self, output='output', weight_path=None):
self.input = input
self.output = os.path.join(output, 'DRN') #定义超分的结果保存的路径,为output路径+模型名所在文件夹
self.model = DRNGenerator((2, 4)) # 实例化模型
if weight_path is None:
weight_path = get_path_from_url(REALSR_WEIGHT_URL)
state_dict = paddle.load(weight_path) #加载权重
state_dict = state_dict['generator']
self.model.load_dict(state_dict)
self.model.eval()
# 标准化
def norm(self, img):
img = np.array(img).transpose([2, 0, 1]).astype('float32') / 1.0
return img.astype('float32')
# 去标准化
def denorm(self, img):
img = img.transpose((1, 2, 0))
return (img * 1).clip(0, 255).astype('uint8')
# 对图片输入进行预测,输入可以是图像路径,也可以是cv2读取的矩阵,或者PIL读取的图像文件
def run_image(self, img):
if isinstance(img, str):
ori_img = Image.open(img).convert('RGB')
elif isinstance(img, np.ndarray):
ori_img = Image.fromarray(img).convert('RGB')
elif isinstance(img, Image.Image):
ori_img = img
img = self.norm(ori_img) #图像标准化
x = paddle.to_tensor(img[np.newaxis, ...]) #转成tensor
with paddle.no_grad():
out = self.model(x)[2] # 执行预测,DRN模型会输出三个tensor,第一个是原始低分辨率影像,第二个是放大两倍,第三个才是我们所需要的最后的结果
pred_img = self.denorm(out.numpy()[0]) #tensor转成numpy的array并去标准化
pred_img = Image.fromarray(pred_img) # array转图像
return pred_img
#输入图像文件路径
def run(self, input):
# 如果输出路径不存在则新建一个
if not os.path.exists(self.output):
os.makedirs(self.output)
pred_img = self.run_image(input) #对输入的图片进行预测
out_path = None
if self.output:
try:
base_name = os.path.splitext(os.path.basename(input))[0]
except:
base_name = 'result'
out_path = os.path.join(self.output, base_name + '.png') #保存路径
pred_img.save(out_path) #保存输出图片
logger = get_logger()
logger.info('Image saved to {}'.format(out_path))
return pred_img, out_path