You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

107 lines
3.5 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from .generators.builder import build_generator
from ...models.ppgan.models.criterions.builder import build_criterion
from ...models.ppgan.models.base_model import BaseModel
from ...models.ppgan.models.builder import MODELS
from ...models.ppgan.utils.visual import tensor2img
from ...models.ppgan.modules.init import reset_parameters
@MODELS.register()
class RCANModel(BaseModel):
"""Base SR model for single image super-resolution.
"""
def __init__(self, generator, pixel_criterion=None, use_init_weight=False):
"""
Args:
generator (dict): config of generator.
pixel_criterion (dict): config of pixel criterion.
"""
super(RCANModel, self).__init__()
self.nets['generator'] = build_generator(generator)
self.error_last = 1e8
self.batch = 0
if pixel_criterion:
self.pixel_criterion = build_criterion(pixel_criterion)
if use_init_weight:
init_sr_weight(self.nets['generator'])
def setup_input(self, input):
self.lq = paddle.to_tensor(input['lq'])
self.visual_items['lq'] = self.lq
if 'gt' in input:
self.gt = paddle.to_tensor(input['gt'])
self.visual_items['gt'] = self.gt
self.image_paths = input['lq_path']
def forward(self):
pass
def train_iter(self, optims=None):
optims['optim'].clear_grad()
self.output = self.nets['generator'](self.lq)
self.visual_items['output'] = self.output
# pixel loss
loss_pixel = self.pixel_criterion(self.output, self.gt)
self.losses['loss_pixel'] = loss_pixel
skip_threshold = 1e6
if loss_pixel.item() < skip_threshold * self.error_last:
loss_pixel.backward()
optims['optim'].step()
else:
print('Skip this batch {}! (Loss: {})'.format(
self.batch + 1, loss_pixel.item()
))
self.batch += 1
if self.batch % 1000 == 0:
self.error_last = loss_pixel.item()/1000
print("update error_last:{}".format(self.error_last))
def test_iter(self, metrics=None):
self.nets['generator'].eval()
with paddle.no_grad():
self.output = self.nets['generator'](self.lq)
self.visual_items['output'] = self.output
self.nets['generator'].train()
out_img = []
gt_img = []
for out_tensor, gt_tensor in zip(self.output, self.gt):
out_img.append(tensor2img(out_tensor, (0., 255.)))
gt_img.append(tensor2img(gt_tensor, (0., 255.)))
if metrics is not None:
for metric in metrics.values():
metric.update(out_img, gt_img)
def init_sr_weight(net):
def reset_func(m):
if hasattr(m, 'weight') and (not isinstance(
m, (nn.BatchNorm, nn.BatchNorm2D))):
reset_parameters(m)
net.apply(reset_func)