|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
|
|
|
from .generators.builder import build_generator
|
|
|
|
from ...models.ppgan.models.criterions.builder import build_criterion
|
|
|
|
from ...models.ppgan.models.base_model import BaseModel
|
|
|
|
from ...models.ppgan.models.builder import MODELS
|
|
|
|
from ...models.ppgan.utils.visual import tensor2img
|
|
|
|
from ...models.ppgan.modules.init import reset_parameters
|
|
|
|
|
|
|
|
|
|
|
|
@MODELS.register()
|
|
|
|
class RCANModel(BaseModel):
|
|
|
|
"""Base SR model for single image super-resolution.
|
|
|
|
"""
|
|
|
|
def __init__(self, generator, pixel_criterion=None, use_init_weight=False):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
generator (dict): config of generator.
|
|
|
|
pixel_criterion (dict): config of pixel criterion.
|
|
|
|
"""
|
|
|
|
super(RCANModel, self).__init__()
|
|
|
|
|
|
|
|
self.nets['generator'] = build_generator(generator)
|
|
|
|
self.error_last = 1e8
|
|
|
|
self.batch = 0
|
|
|
|
if pixel_criterion:
|
|
|
|
self.pixel_criterion = build_criterion(pixel_criterion)
|
|
|
|
if use_init_weight:
|
|
|
|
init_sr_weight(self.nets['generator'])
|
|
|
|
|
|
|
|
def setup_input(self, input):
|
|
|
|
self.lq = paddle.to_tensor(input['lq'])
|
|
|
|
self.visual_items['lq'] = self.lq
|
|
|
|
if 'gt' in input:
|
|
|
|
self.gt = paddle.to_tensor(input['gt'])
|
|
|
|
self.visual_items['gt'] = self.gt
|
|
|
|
self.image_paths = input['lq_path']
|
|
|
|
|
|
|
|
def forward(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def train_iter(self, optims=None):
|
|
|
|
optims['optim'].clear_grad()
|
|
|
|
|
|
|
|
self.output = self.nets['generator'](self.lq)
|
|
|
|
self.visual_items['output'] = self.output
|
|
|
|
# pixel loss
|
|
|
|
loss_pixel = self.pixel_criterion(self.output, self.gt)
|
|
|
|
self.losses['loss_pixel'] = loss_pixel
|
|
|
|
|
|
|
|
skip_threshold = 1e6
|
|
|
|
|
|
|
|
if loss_pixel.item() < skip_threshold * self.error_last:
|
|
|
|
loss_pixel.backward()
|
|
|
|
optims['optim'].step()
|
|
|
|
else:
|
|
|
|
print('Skip this batch {}! (Loss: {})'.format(
|
|
|
|
self.batch + 1, loss_pixel.item()
|
|
|
|
))
|
|
|
|
self.batch += 1
|
|
|
|
|
|
|
|
if self.batch % 1000 == 0:
|
|
|
|
self.error_last = loss_pixel.item()/1000
|
|
|
|
print("update error_last:{}".format(self.error_last))
|
|
|
|
|
|
|
|
|
|
|
|
def test_iter(self, metrics=None):
|
|
|
|
self.nets['generator'].eval()
|
|
|
|
with paddle.no_grad():
|
|
|
|
self.output = self.nets['generator'](self.lq)
|
|
|
|
self.visual_items['output'] = self.output
|
|
|
|
self.nets['generator'].train()
|
|
|
|
|
|
|
|
out_img = []
|
|
|
|
gt_img = []
|
|
|
|
for out_tensor, gt_tensor in zip(self.output, self.gt):
|
|
|
|
out_img.append(tensor2img(out_tensor, (0., 255.)))
|
|
|
|
gt_img.append(tensor2img(gt_tensor, (0., 255.)))
|
|
|
|
|
|
|
|
if metrics is not None:
|
|
|
|
for metric in metrics.values():
|
|
|
|
metric.update(out_img, gt_img)
|
|
|
|
|
|
|
|
|
|
|
|
def init_sr_weight(net):
|
|
|
|
def reset_func(m):
|
|
|
|
if hasattr(m, 'weight') and (not isinstance(
|
|
|
|
m, (nn.BatchNorm, nn.BatchNorm2D))):
|
|
|
|
reset_parameters(m)
|
|
|
|
|
|
|
|
net.apply(reset_func)
|