You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.6 KiB
82 lines
2.6 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
import os
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
import paddle
|
||
|
|
||
|
|
||
|
class BasePredictor(object):
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def build_inference_model(self):
|
||
|
if paddle.in_dynamic_mode():
|
||
|
# todo self.model = build_model(self.cfg)
|
||
|
pass
|
||
|
else:
|
||
|
place = paddle.get_device()
|
||
|
self.exe = paddle.static.Executor(place)
|
||
|
file_names = os.listdir(self.weight_path)
|
||
|
for file_name in file_names:
|
||
|
if file_name.find('model') > -1:
|
||
|
model_file = file_name
|
||
|
elif file_name.find('param') > -1:
|
||
|
param_file = file_name
|
||
|
|
||
|
self.program, self.feed_names, self.fetch_targets = paddle.static.load_inference_model(
|
||
|
self.weight_path,
|
||
|
executor=self.exe,
|
||
|
model_filename=model_file,
|
||
|
params_filename=param_file)
|
||
|
|
||
|
def base_forward(self, inputs):
|
||
|
if paddle.in_dynamic_mode():
|
||
|
out = self.model(inputs)
|
||
|
else:
|
||
|
feed_dict = {}
|
||
|
if isinstance(inputs, dict):
|
||
|
feed_dict = inputs
|
||
|
elif isinstance(inputs, (list, tuple)):
|
||
|
for i, feed_name in enumerate(self.feed_names):
|
||
|
feed_dict[feed_name] = inputs[i]
|
||
|
else:
|
||
|
feed_dict[self.feed_names[0]] = inputs
|
||
|
|
||
|
out = self.exe.run(self.program,
|
||
|
fetch_list=self.fetch_targets,
|
||
|
feed=feed_dict)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def is_image(self, input):
|
||
|
try:
|
||
|
if isinstance(input, (np.ndarray, Image.Image)):
|
||
|
return True
|
||
|
elif isinstance(input, str):
|
||
|
if not os.path.isfile(input):
|
||
|
raise ValueError('input must be a file')
|
||
|
img = Image.open(input)
|
||
|
_ = img.size
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
except:
|
||
|
return False
|
||
|
|
||
|
def run(self):
|
||
|
raise NotImplementedError
|