You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.3 KiB
67 lines
2.3 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
3 years ago
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle.utils import try_import
|
||
|
|
||
3 years ago
|
from paddlers.models.ppdet.core.workspace import register, serializable
|
||
|
from paddlers.models.ppdet.utils.logger import setup_logger
|
||
3 years ago
|
logger = setup_logger(__name__)
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class UnstructuredPruner(object):
|
||
|
def __init__(self,
|
||
|
stable_epochs,
|
||
|
pruning_epochs,
|
||
|
tunning_epochs,
|
||
|
pruning_steps,
|
||
|
ratio,
|
||
|
initial_ratio,
|
||
|
prune_params_type=None):
|
||
|
self.stable_epochs = stable_epochs
|
||
|
self.pruning_epochs = pruning_epochs
|
||
|
self.tunning_epochs = tunning_epochs
|
||
|
self.ratio = ratio
|
||
|
self.prune_params_type = prune_params_type
|
||
|
self.initial_ratio = initial_ratio
|
||
|
self.pruning_steps = pruning_steps
|
||
|
|
||
|
def __call__(self, model, steps_per_epoch, skip_params_func=None):
|
||
|
paddleslim = try_import('paddleslim')
|
||
|
from paddleslim import GMPUnstructuredPruner
|
||
|
configs = {
|
||
|
'pruning_strategy': 'gmp',
|
||
|
'stable_iterations': self.stable_epochs * steps_per_epoch,
|
||
|
'pruning_iterations': self.pruning_epochs * steps_per_epoch,
|
||
|
'tunning_iterations': self.tunning_epochs * steps_per_epoch,
|
||
|
'resume_iteration': 0,
|
||
|
'pruning_steps': self.pruning_steps,
|
||
|
'initial_ratio': self.initial_ratio,
|
||
|
}
|
||
|
|
||
|
pruner = GMPUnstructuredPruner(
|
||
|
model,
|
||
|
ratio=self.ratio,
|
||
|
skip_params_func=skip_params_func,
|
||
|
prune_params_type=self.prune_params_type,
|
||
|
local_sparsity=True,
|
||
|
configs=configs)
|
||
|
|
||
|
return pruner
|