You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
2.7 KiB
85 lines
2.7 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
3 years ago
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle.utils import try_import
|
||
|
|
||
3 years ago
|
from paddlers.models.ppdet.core.workspace import register, serializable
|
||
|
from paddlers.models.ppdet.utils.logger import setup_logger
|
||
3 years ago
|
logger = setup_logger(__name__)
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class QAT(object):
|
||
|
def __init__(self, quant_config, print_model):
|
||
|
super(QAT, self).__init__()
|
||
|
self.quant_config = quant_config
|
||
|
self.print_model = print_model
|
||
|
|
||
|
def __call__(self, model):
|
||
|
paddleslim = try_import('paddleslim')
|
||
|
self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config)
|
||
|
if self.print_model:
|
||
|
logger.info("Model before quant:")
|
||
|
logger.info(model)
|
||
|
|
||
|
self.quanter.quantize(model)
|
||
|
|
||
|
if self.print_model:
|
||
|
logger.info("Quantized model:")
|
||
|
logger.info(model)
|
||
|
|
||
|
return model
|
||
|
|
||
|
def save_quantized_model(self, layer, path, input_spec=None, **config):
|
||
|
self.quanter.save_quantized_model(
|
||
|
model=layer, path=path, input_spec=input_spec, **config)
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class PTQ(object):
|
||
|
def __init__(self,
|
||
|
ptq_config,
|
||
|
quant_batch_num=10,
|
||
|
output_dir='output_inference',
|
||
|
fuse=True,
|
||
|
fuse_list=None):
|
||
|
super(PTQ, self).__init__()
|
||
|
self.ptq_config = ptq_config
|
||
|
self.quant_batch_num = quant_batch_num
|
||
|
self.output_dir = output_dir
|
||
|
self.fuse = fuse
|
||
|
self.fuse_list = fuse_list
|
||
|
|
||
|
def __call__(self, model):
|
||
|
paddleslim = try_import('paddleslim')
|
||
|
self.ptq = paddleslim.PTQ(**self.ptq_config)
|
||
|
model.eval()
|
||
|
quant_model = self.ptq.quantize(
|
||
|
model, fuse=self.fuse, fuse_list=self.fuse_list)
|
||
|
|
||
|
return quant_model
|
||
|
|
||
|
def save_quantized_model(self,
|
||
|
quant_model,
|
||
|
quantize_model_path,
|
||
|
input_spec=None):
|
||
|
self.ptq.save_quantized_model(quant_model, quantize_model_path,
|
||
|
input_spec)
|