You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
4.0 KiB
109 lines
4.0 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
3 years ago
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
#
|
||
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
||
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import math
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
|
||
3 years ago
|
from paddlers.models.ppdet.core.workspace import register, serializable
|
||
3 years ago
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class PositionEmbedding(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_pos_feats=128,
|
||
|
temperature=10000,
|
||
|
normalize=True,
|
||
|
scale=None,
|
||
|
embed_type='sine',
|
||
|
num_embeddings=50,
|
||
|
offset=0.):
|
||
|
super(PositionEmbedding, self).__init__()
|
||
|
assert embed_type in ['sine', 'learned']
|
||
|
|
||
|
self.embed_type = embed_type
|
||
|
self.offset = offset
|
||
|
self.eps = 1e-6
|
||
|
if self.embed_type == 'sine':
|
||
|
self.num_pos_feats = num_pos_feats
|
||
|
self.temperature = temperature
|
||
|
self.normalize = normalize
|
||
|
if scale is not None and normalize is False:
|
||
|
raise ValueError("normalize should be True if scale is passed")
|
||
|
if scale is None:
|
||
|
scale = 2 * math.pi
|
||
|
self.scale = scale
|
||
|
elif self.embed_type == 'learned':
|
||
|
self.row_embed = nn.Embedding(num_embeddings, num_pos_feats)
|
||
|
self.col_embed = nn.Embedding(num_embeddings, num_pos_feats)
|
||
|
else:
|
||
|
raise ValueError(f"not supported {self.embed_type}")
|
||
|
|
||
|
def forward(self, mask):
|
||
|
"""
|
||
|
Args:
|
||
|
mask (Tensor): [B, H, W]
|
||
|
Returns:
|
||
|
pos (Tensor): [B, C, H, W]
|
||
|
"""
|
||
|
assert mask.dtype == paddle.bool
|
||
|
if self.embed_type == 'sine':
|
||
|
mask = mask.astype('float32')
|
||
|
y_embed = mask.cumsum(1, dtype='float32')
|
||
|
x_embed = mask.cumsum(2, dtype='float32')
|
||
|
if self.normalize:
|
||
|
y_embed = (y_embed + self.offset) / (
|
||
|
y_embed[:, -1:, :] + self.eps) * self.scale
|
||
|
x_embed = (x_embed + self.offset) / (
|
||
|
x_embed[:, :, -1:] + self.eps) * self.scale
|
||
|
|
||
|
dim_t = 2 * (paddle.arange(self.num_pos_feats) //
|
||
|
2).astype('float32')
|
||
|
dim_t = self.temperature**(dim_t / self.num_pos_feats)
|
||
|
|
||
|
pos_x = x_embed.unsqueeze(-1) / dim_t
|
||
|
pos_y = y_embed.unsqueeze(-1) / dim_t
|
||
|
pos_x = paddle.stack(
|
||
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
|
||
|
axis=4).flatten(3)
|
||
|
pos_y = paddle.stack(
|
||
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
|
||
|
axis=4).flatten(3)
|
||
|
pos = paddle.concat((pos_y, pos_x), axis=3).transpose([0, 3, 1, 2])
|
||
|
return pos
|
||
|
elif self.embed_type == 'learned':
|
||
|
h, w = mask.shape[-2:]
|
||
|
i = paddle.arange(w)
|
||
|
j = paddle.arange(h)
|
||
|
x_emb = self.col_embed(i)
|
||
|
y_emb = self.row_embed(j)
|
||
|
pos = paddle.concat(
|
||
|
[
|
||
|
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
||
|
y_emb.unsqueeze(1).repeat(1, w, 1),
|
||
|
],
|
||
|
axis=-1).transpose([2, 0, 1]).unsqueeze(0).tile(mask.shape[0],
|
||
|
1, 1, 1)
|
||
|
return pos
|
||
|
else:
|
||
|
raise ValueError(f"not supported {self.embed_type}")
|