|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.nn.initializer import Normal, Constant
|
|
|
|
from paddle import ParamAttr
|
|
|
|
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Linear
|
|
|
|
from paddle.regularizer import L2Decay
|
|
|
|
from paddle.nn.initializer import KaimingNormal, XavierNormal
|
|
|
|
from paddlers.models.ppdet.core.workspace import register
|
|
|
|
|
|
|
|
__all__ = ['PPLCNetEmbedding']
|
|
|
|
|
|
|
|
# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
|
|
|
|
# k: kernel_size
|
|
|
|
# in_c: input channel number in depthwise block
|
|
|
|
# out_c: output channel number in depthwise block
|
|
|
|
# s: stride in depthwise block
|
|
|
|
# use_se: whether to use SE block
|
|
|
|
|
|
|
|
NET_CONFIG = {
|
|
|
|
"blocks2":
|
|
|
|
#k, in_c, out_c, s, use_se
|
|
|
|
[[3, 16, 32, 1, False]],
|
|
|
|
"blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
|
|
|
|
"blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
|
|
|
|
"blocks5":
|
|
|
|
[[3, 128, 256, 2, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False],
|
|
|
|
[5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
|
|
|
|
"blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def make_divisible(v, divisor=8, min_value=None):
|
|
|
|
if min_value is None:
|
|
|
|
min_value = divisor
|
|
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
|
|
if new_v < 0.9 * v:
|
|
|
|
new_v += divisor
|
|
|
|
return new_v
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
filter_size,
|
|
|
|
num_filters,
|
|
|
|
stride,
|
|
|
|
num_groups=1):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.conv = Conv2D(
|
|
|
|
in_channels=num_channels,
|
|
|
|
out_channels=num_filters,
|
|
|
|
kernel_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=(filter_size - 1) // 2,
|
|
|
|
groups=num_groups,
|
|
|
|
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
self.bn = BatchNorm2D(
|
|
|
|
num_filters,
|
|
|
|
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
|
|
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
|
|
|
|
self.hardswish = nn.Hardswish()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn(x)
|
|
|
|
x = self.hardswish(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class DepthwiseSeparable(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
stride,
|
|
|
|
dw_size=3,
|
|
|
|
use_se=False):
|
|
|
|
super().__init__()
|
|
|
|
self.use_se = use_se
|
|
|
|
self.dw_conv = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_channels,
|
|
|
|
filter_size=dw_size,
|
|
|
|
stride=stride,
|
|
|
|
num_groups=num_channels)
|
|
|
|
if use_se:
|
|
|
|
self.se = SEModule(num_channels)
|
|
|
|
self.pw_conv = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
filter_size=1,
|
|
|
|
num_filters=num_filters,
|
|
|
|
stride=1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.dw_conv(x)
|
|
|
|
if self.use_se:
|
|
|
|
x = self.se(x)
|
|
|
|
x = self.pw_conv(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SEModule(nn.Layer):
|
|
|
|
def __init__(self, channel, reduction=4):
|
|
|
|
super().__init__()
|
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
|
|
self.conv1 = Conv2D(
|
|
|
|
in_channels=channel,
|
|
|
|
out_channels=channel // reduction,
|
|
|
|
kernel_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.conv2 = Conv2D(
|
|
|
|
in_channels=channel // reduction,
|
|
|
|
out_channels=channel,
|
|
|
|
kernel_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0)
|
|
|
|
self.hardsigmoid = nn.Hardsigmoid()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
x = self.avg_pool(x)
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.hardsigmoid(x)
|
|
|
|
x = paddle.multiply(x=identity, y=x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class PPLCNet(nn.Layer):
|
|
|
|
"""
|
|
|
|
PP-LCNet, see https://arxiv.org/abs/2109.15099.
|
|
|
|
This code is different from PPLCNet in ppdet/modeling/backbones/lcnet.py
|
|
|
|
or in PaddleClas, because the output is the flatten feature of last_conv.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
scale (float): Scale ratio of channels.
|
|
|
|
class_expand (int): Number of channels of conv feature.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, scale=1.0, class_expand=1280):
|
|
|
|
super(PPLCNet, self).__init__()
|
|
|
|
self.scale = scale
|
|
|
|
self.class_expand = class_expand
|
|
|
|
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
|
|
num_channels=3,
|
|
|
|
filter_size=3,
|
|
|
|
num_filters=make_divisible(16 * scale),
|
|
|
|
stride=2)
|
|
|
|
|
|
|
|
self.blocks2 = nn.Sequential(*[
|
|
|
|
DepthwiseSeparable(
|
|
|
|
num_channels=make_divisible(in_c * scale),
|
|
|
|
num_filters=make_divisible(out_c * scale),
|
|
|
|
dw_size=k,
|
|
|
|
stride=s,
|
|
|
|
use_se=se)
|
|
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"])
|
|
|
|
])
|
|
|
|
|
|
|
|
self.blocks3 = nn.Sequential(*[
|
|
|
|
DepthwiseSeparable(
|
|
|
|
num_channels=make_divisible(in_c * scale),
|
|
|
|
num_filters=make_divisible(out_c * scale),
|
|
|
|
dw_size=k,
|
|
|
|
stride=s,
|
|
|
|
use_se=se)
|
|
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"])
|
|
|
|
])
|
|
|
|
|
|
|
|
self.blocks4 = nn.Sequential(*[
|
|
|
|
DepthwiseSeparable(
|
|
|
|
num_channels=make_divisible(in_c * scale),
|
|
|
|
num_filters=make_divisible(out_c * scale),
|
|
|
|
dw_size=k,
|
|
|
|
stride=s,
|
|
|
|
use_se=se)
|
|
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"])
|
|
|
|
])
|
|
|
|
|
|
|
|
self.blocks5 = nn.Sequential(*[
|
|
|
|
DepthwiseSeparable(
|
|
|
|
num_channels=make_divisible(in_c * scale),
|
|
|
|
num_filters=make_divisible(out_c * scale),
|
|
|
|
dw_size=k,
|
|
|
|
stride=s,
|
|
|
|
use_se=se)
|
|
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"])
|
|
|
|
])
|
|
|
|
|
|
|
|
self.blocks6 = nn.Sequential(*[
|
|
|
|
DepthwiseSeparable(
|
|
|
|
num_channels=make_divisible(in_c * scale),
|
|
|
|
num_filters=make_divisible(out_c * scale),
|
|
|
|
dw_size=k,
|
|
|
|
stride=s,
|
|
|
|
use_se=se)
|
|
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"])
|
|
|
|
])
|
|
|
|
|
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
|
|
self.last_conv = Conv2D(
|
|
|
|
in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
|
|
|
|
out_channels=self.class_expand,
|
|
|
|
kernel_size=1,
|
|
|
|
stride=1,
|
|
|
|
padding=0,
|
|
|
|
bias_attr=False)
|
|
|
|
self.hardswish = nn.Hardswish()
|
|
|
|
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
|
|
|
|
x = self.blocks2(x)
|
|
|
|
x = self.blocks3(x)
|
|
|
|
x = self.blocks4(x)
|
|
|
|
x = self.blocks5(x)
|
|
|
|
x = self.blocks6(x)
|
|
|
|
|
|
|
|
x = self.avg_pool(x)
|
|
|
|
x = self.last_conv(x)
|
|
|
|
x = self.hardswish(x)
|
|
|
|
x = self.flatten(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class FC(nn.Layer):
|
|
|
|
def __init__(self, input_ch, output_ch):
|
|
|
|
super(FC, self).__init__()
|
|
|
|
weight_attr = ParamAttr(initializer=XavierNormal())
|
|
|
|
self.fc = paddle.nn.Linear(input_ch, output_ch, weight_attr=weight_attr)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
out = self.fc(x)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
@register
|
|
|
|
class PPLCNetEmbedding(nn.Layer):
|
|
|
|
"""
|
|
|
|
PPLCNet Embedding
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_ch (int): Number of channels of input conv feature.
|
|
|
|
output_ch (int): Number of channels of output conv feature.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, scale=2.5, input_ch=1280, output_ch=512):
|
|
|
|
super(PPLCNetEmbedding, self).__init__()
|
|
|
|
self.backbone = PPLCNet(scale=scale)
|
|
|
|
self.neck = FC(input_ch, output_ch)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
feat = self.backbone(x)
|
|
|
|
feat_out = self.neck(feat)
|
|
|
|
return feat_out
|