|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def get_color(idx):
|
|
|
|
idx = idx * 3
|
|
|
|
color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
|
|
|
|
return color
|
|
|
|
|
|
|
|
|
|
|
|
def plot_tracking(image,
|
|
|
|
tlwhs,
|
|
|
|
obj_ids,
|
|
|
|
scores=None,
|
|
|
|
frame_id=0,
|
|
|
|
fps=0.,
|
|
|
|
ids2names=[]):
|
|
|
|
im = np.ascontiguousarray(np.copy(image))
|
|
|
|
im_h, im_w = im.shape[:2]
|
|
|
|
|
|
|
|
top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255
|
|
|
|
|
|
|
|
text_scale = max(1, image.shape[1] / 1600.)
|
|
|
|
text_thickness = 2
|
|
|
|
line_thickness = max(1, int(image.shape[1] / 500.))
|
|
|
|
|
|
|
|
radius = max(5, int(im_w / 140.))
|
|
|
|
cv2.putText(
|
|
|
|
im,
|
|
|
|
'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
|
|
|
|
(0, int(15 * text_scale)),
|
|
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
|
|
text_scale, (0, 0, 255),
|
|
|
|
thickness=2)
|
|
|
|
|
|
|
|
for i, tlwh in enumerate(tlwhs):
|
|
|
|
x1, y1, w, h = tlwh
|
|
|
|
intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
|
|
|
|
obj_id = int(obj_ids[i])
|
|
|
|
id_text = '{}'.format(int(obj_id))
|
|
|
|
if ids2names != []:
|
|
|
|
assert len(
|
|
|
|
ids2names) == 1, "plot_tracking only supports single classes."
|
|
|
|
id_text = '{}_'.format(ids2names[0]) + id_text
|
|
|
|
_line_thickness = 1 if obj_id <= 0 else line_thickness
|
|
|
|
color = get_color(abs(obj_id))
|
|
|
|
cv2.rectangle(
|
|
|
|
im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness)
|
|
|
|
cv2.putText(
|
|
|
|
im,
|
|
|
|
id_text, (intbox[0], intbox[1] - 10),
|
|
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
|
|
text_scale, (0, 0, 255),
|
|
|
|
thickness=text_thickness)
|
|
|
|
|
|
|
|
if scores is not None:
|
|
|
|
text = '{:.2f}'.format(float(scores[i]))
|
|
|
|
cv2.putText(
|
|
|
|
im,
|
|
|
|
text, (intbox[0], intbox[1] + 10),
|
|
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
|
|
text_scale, (0, 255, 255),
|
|
|
|
thickness=text_thickness)
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def plot_tracking_dict(image,
|
|
|
|
num_classes,
|
|
|
|
tlwhs_dict,
|
|
|
|
obj_ids_dict,
|
|
|
|
scores_dict,
|
|
|
|
frame_id=0,
|
|
|
|
fps=0.,
|
|
|
|
ids2names=[]):
|
|
|
|
im = np.ascontiguousarray(np.copy(image))
|
|
|
|
im_h, im_w = im.shape[:2]
|
|
|
|
|
|
|
|
top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255
|
|
|
|
|
|
|
|
text_scale = max(1, image.shape[1] / 1600.)
|
|
|
|
text_thickness = 2
|
|
|
|
line_thickness = max(1, int(image.shape[1] / 500.))
|
|
|
|
|
|
|
|
radius = max(5, int(im_w / 140.))
|
|
|
|
|
|
|
|
for cls_id in range(num_classes):
|
|
|
|
tlwhs = tlwhs_dict[cls_id]
|
|
|
|
obj_ids = obj_ids_dict[cls_id]
|
|
|
|
scores = scores_dict[cls_id]
|
|
|
|
cv2.putText(
|
|
|
|
im,
|
|
|
|
'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
|
|
|
|
(0, int(15 * text_scale)),
|
|
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
|
|
text_scale, (0, 0, 255),
|
|
|
|
thickness=2)
|
|
|
|
|
|
|
|
for i, tlwh in enumerate(tlwhs):
|
|
|
|
x1, y1, w, h = tlwh
|
|
|
|
intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
|
|
|
|
obj_id = int(obj_ids[i])
|
|
|
|
|
|
|
|
id_text = '{}'.format(int(obj_id))
|
|
|
|
if ids2names != []:
|
|
|
|
id_text = '{}_{}'.format(ids2names[cls_id], id_text)
|
|
|
|
else:
|
|
|
|
id_text = 'class{}_{}'.format(cls_id, id_text)
|
|
|
|
|
|
|
|
_line_thickness = 1 if obj_id <= 0 else line_thickness
|
|
|
|
color = get_color(abs(obj_id))
|
|
|
|
cv2.rectangle(
|
|
|
|
im,
|
|
|
|
intbox[0:2],
|
|
|
|
intbox[2:4],
|
|
|
|
color=color,
|
|
|
|
thickness=line_thickness)
|
|
|
|
cv2.putText(
|
|
|
|
im,
|
|
|
|
id_text, (intbox[0], intbox[1] - 10),
|
|
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
|
|
text_scale, (0, 0, 255),
|
|
|
|
thickness=text_thickness)
|
|
|
|
|
|
|
|
if scores is not None:
|
|
|
|
text = '{:.2f}'.format(float(scores[i]))
|
|
|
|
cv2.putText(
|
|
|
|
im,
|
|
|
|
text, (intbox[0], intbox[1] + 10),
|
|
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
|
|
text_scale, (0, 255, 255),
|
|
|
|
thickness=text_thickness)
|
|
|
|
return im
|