|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import copy
|
|
|
|
from enum import IntEnum
|
|
|
|
import os.path as osp
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic
|
|
|
|
|
|
|
|
|
|
|
|
class CDDataset(BaseDataset):
|
|
|
|
"""
|
|
|
|
读取变化检测任务数据集,并对样本进行相应的处理(来自SegDataset,图像标签需要两个)。
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_dir (str): 数据集所在的目录路径。
|
|
|
|
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路径)。当`with_seg_labels`为
|
|
|
|
False(默认设置)时,文件中每一行应依次包含第一时相影像、第二时相影像以及变化检测标签的路径;当`with_seg_labels`为True时,
|
|
|
|
文件中每一行应依次包含第一时相影像、第二时相影像、变化检测标签、第一时相建筑物标签以及第二时相建筑物标签的路径。
|
|
|
|
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。
|
|
|
|
transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。
|
|
|
|
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
|
|
|
|
系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
|
|
|
|
一半。
|
|
|
|
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
|
|
|
|
with_seg_labels (bool, optional): 数据集中是否包含两个时相的语义分割标签。默认为False。
|
|
|
|
binarize_labels (bool, optional): 是否对数据集中的标签进行二值化操作。默认为False。
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
data_dir,
|
|
|
|
file_list,
|
|
|
|
label_list=None,
|
|
|
|
transforms=None,
|
|
|
|
num_workers='auto',
|
|
|
|
shuffle=False,
|
|
|
|
with_seg_labels=False,
|
|
|
|
binarize_labels=False):
|
|
|
|
super(CDDataset, self).__init__(data_dir, label_list, transforms,
|
|
|
|
num_workers, shuffle)
|
|
|
|
|
|
|
|
DELIMETER = ' '
|
|
|
|
|
|
|
|
# TODO: batch padding
|
|
|
|
self.batch_transforms = None
|
|
|
|
self.file_list = list()
|
|
|
|
self.labels = list()
|
|
|
|
self.with_seg_labels = with_seg_labels
|
|
|
|
if self.with_seg_labels:
|
|
|
|
num_items = 5 # RGB1, RGB2, CD, Seg1, Seg2
|
|
|
|
else:
|
|
|
|
num_items = 3 # RGB1, RGB2, CD
|
|
|
|
self.binarize_labels = binarize_labels
|
|
|
|
|
|
|
|
# TODO:非None时,让用户跳转数据集分析生成label_list
|
|
|
|
# 不要在此处分析label file
|
|
|
|
if label_list is not None:
|
|
|
|
with open(label_list, encoding=get_encoding(label_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
item = line.strip()
|
|
|
|
self.labels.append(item)
|
|
|
|
|
|
|
|
with open(file_list, encoding=get_encoding(file_list)) as f:
|
|
|
|
for line in f:
|
|
|
|
items = line.strip().split(DELIMETER)
|
|
|
|
|
|
|
|
if len(items) != num_items:
|
|
|
|
raise Exception(
|
|
|
|
"Line[{}] in file_list[{}] has an incorrect number of file paths.".
|
|
|
|
format(line.strip(), file_list))
|
|
|
|
|
|
|
|
items = list(map(norm_path, items))
|
|
|
|
|
|
|
|
full_path_im_t1 = osp.join(data_dir, items[0])
|
|
|
|
full_path_im_t2 = osp.join(data_dir, items[1])
|
|
|
|
full_path_label = osp.join(data_dir, items[2])
|
|
|
|
if not all(
|
|
|
|
map(is_pic, (full_path_im_t1, full_path_im_t2,
|
|
|
|
full_path_label))):
|
|
|
|
continue
|
|
|
|
if not osp.exists(full_path_im_t1):
|
|
|
|
raise IOError('Image file {} does not exist!'.format(
|
|
|
|
full_path_im_t1))
|
|
|
|
if not osp.exists(full_path_im_t2):
|
|
|
|
raise IOError('Image file {} does not exist!'.format(
|
|
|
|
full_path_im_t2))
|
|
|
|
if not osp.exists(full_path_label):
|
|
|
|
raise IOError('Label file {} does not exist!'.format(
|
|
|
|
full_path_label))
|
|
|
|
|
|
|
|
if with_seg_labels:
|
|
|
|
full_path_seg_label_t1 = osp.join(data_dir, items[3])
|
|
|
|
full_path_seg_label_t2 = osp.join(data_dir, items[4])
|
|
|
|
if not osp.exists(full_path_seg_label_t1):
|
|
|
|
raise IOError('Label file {} does not exist!'.format(
|
|
|
|
full_path_seg_label_t1))
|
|
|
|
if not osp.exists(full_path_seg_label_t2):
|
|
|
|
raise IOError('Label file {} does not exist!'.format(
|
|
|
|
full_path_seg_label_t2))
|
|
|
|
|
|
|
|
item_dict = dict(
|
|
|
|
image_t1=full_path_im_t1,
|
|
|
|
image_t2=full_path_im_t2,
|
|
|
|
mask=full_path_label)
|
|
|
|
if with_seg_labels:
|
|
|
|
item_dict['aux_masks'] = [
|
|
|
|
full_path_seg_label_t1, full_path_seg_label_t2
|
|
|
|
]
|
|
|
|
|
|
|
|
self.file_list.append(item_dict)
|
|
|
|
|
|
|
|
self.num_samples = len(self.file_list)
|
|
|
|
logging.info("{} samples in file {}".format(
|
|
|
|
len(self.file_list), file_list))
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
sample = copy.deepcopy(self.file_list[idx])
|
|
|
|
sample = self.transforms.apply_transforms(sample)
|
|
|
|
|
|
|
|
if self.binarize_labels:
|
|
|
|
# Requires 'mask' to exist
|
|
|
|
sample['mask'] = self._binarize(sample['mask'])
|
|
|
|
if 'aux_masks' in sample:
|
|
|
|
sample['aux_masks'] = list(
|
|
|
|
map(self._binarize, sample['aux_masks']))
|
|
|
|
|
|
|
|
outputs = self.transforms.arrange_outputs(sample)
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.file_list)
|
|
|
|
|
|
|
|
def _binarize(self, mask, threshold=127):
|
|
|
|
return (mask > threshold).astype('int64')
|
|
|
|
|
|
|
|
|
|
|
|
class MaskType(IntEnum):
|
|
|
|
"""Enumeration of the mask types used in the change detection task."""
|
|
|
|
CD = 0
|
|
|
|
SEG_T1 = 1
|
|
|
|
SEG_T2 = 2
|