|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import math
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
class PairwiseCosface(nn.Layer):
|
|
|
|
def __init__(self, margin, gamma):
|
|
|
|
super(PairwiseCosface, self).__init__()
|
|
|
|
self.margin = margin
|
|
|
|
self.gamma = gamma
|
|
|
|
|
|
|
|
def forward(self, embedding, targets):
|
|
|
|
if isinstance(embedding, dict):
|
|
|
|
embedding = embedding['features']
|
|
|
|
# Normalize embedding features
|
|
|
|
embedding = F.normalize(embedding, axis=1)
|
|
|
|
dist_mat = paddle.matmul(embedding, embedding, transpose_y=True)
|
|
|
|
|
|
|
|
N = dist_mat.shape[0]
|
|
|
|
is_pos = targets.reshape([N, 1]).expand([N, N]).equal(
|
|
|
|
paddle.t(targets.reshape([N, 1]).expand([N, N]))).astype('float')
|
|
|
|
is_neg = targets.reshape([N, 1]).expand([N, N]).not_equal(
|
|
|
|
paddle.t(targets.reshape([N, 1]).expand([N, N]))).astype('float')
|
|
|
|
|
|
|
|
# Mask scores related to itself
|
|
|
|
is_pos = is_pos - paddle.eye(N, N)
|
|
|
|
|
|
|
|
s_p = dist_mat * is_pos
|
|
|
|
s_n = dist_mat * is_neg
|
|
|
|
|
|
|
|
logit_p = -self.gamma * s_p + (-99999999.) * (1 - is_pos)
|
|
|
|
logit_n = self.gamma * (s_n + self.margin) + (-99999999.) * (1 - is_neg)
|
|
|
|
|
|
|
|
loss = F.softplus(
|
|
|
|
paddle.logsumexp(
|
|
|
|
logit_p, axis=1) + paddle.logsumexp(
|
|
|
|
logit_n, axis=1)).mean()
|
|
|
|
|
|
|
|
return {"PairwiseCosface": loss}
|