You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
39 lines
1.3 KiB
39 lines
1.3 KiB
3 years ago
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
import paddle
|
||
|
|
||
|
|
||
|
class NpairsLoss(paddle.nn.Layer):
|
||
|
def __init__(self, reg_lambda=0.01):
|
||
|
super(NpairsLoss, self).__init__()
|
||
|
self.reg_lambda = reg_lambda
|
||
|
|
||
|
def forward(self, input, target=None):
|
||
|
"""
|
||
|
anchor and positive(should include label)
|
||
|
"""
|
||
|
features = input["features"]
|
||
|
reg_lambda = self.reg_lambda
|
||
|
batch_size = features.shape[0]
|
||
|
fea_dim = features.shape[1]
|
||
|
num_class = batch_size // 2
|
||
|
|
||
|
#reshape
|
||
|
out_feas = paddle.reshape(features, shape=[-1, 2, fea_dim])
|
||
|
anc_feas, pos_feas = paddle.split(out_feas, num_or_sections=2, axis=1)
|
||
|
anc_feas = paddle.squeeze(anc_feas, axis=1)
|
||
|
pos_feas = paddle.squeeze(pos_feas, axis=1)
|
||
|
|
||
|
#get simi matrix
|
||
|
similarity_matrix = paddle.matmul(
|
||
|
anc_feas, pos_feas, transpose_y=True) #get similarity matrix
|
||
|
sparse_labels = paddle.arange(0, num_class, dtype='int64')
|
||
|
xentloss = paddle.nn.CrossEntropyLoss()(
|
||
|
similarity_matrix, sparse_labels) #by default: mean
|
||
|
|
||
|
#l2 norm
|
||
|
reg = paddle.mean(paddle.sum(paddle.square(features), axis=1))
|
||
|
l2loss = 0.5 * reg_lambda * reg
|
||
|
return {"npairsloss": xentloss + l2loss}
|