You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
4.8 KiB
112 lines
4.8 KiB
3 years ago
|
# -*- coding: utf-8 -*-
|
||
|
# @File : json_split.py
|
||
|
# @Author : zhaoHL
|
||
|
# @Contact : huilin16@qq.com
|
||
|
# @Time Create First: 2021/8/1 10:25
|
||
|
# @Contributor : zhaoHL
|
||
|
# @Time Modify Last : 2021/8/1 10:25
|
||
|
'''
|
||
|
@File Description:
|
||
|
# json数据集划分,可以通过val_split_rate、val_split_num控制划分比例或个数, keep_val_inTrain可以设定是否在train中保留val相关信息
|
||
|
!python ./json_split.py \
|
||
|
--json_all_path=./input/instances_val2017.json \
|
||
|
--json_train_path=./output/instances_val2017_split1.json \
|
||
|
--json_val_path=./output/instances_val2017_split2.json
|
||
|
'''
|
||
|
|
||
|
import json
|
||
|
import argparse
|
||
|
import pandas as pd
|
||
|
|
||
|
def get_annno(df_img_split, df_anno):
|
||
|
df_merge = pd.merge(df_img_split, df_anno, on="image_id")
|
||
|
df_anno_split = df_merge[df_anno.columns.to_list()]
|
||
|
df_anno_split = df_anno_split.sort_values(by='id')
|
||
|
return df_anno_split
|
||
|
|
||
|
|
||
|
def js_split(js_all_path, js_train_path, js_val_path, val_split_rate, val_split_num, keep_val_inTrain,
|
||
|
image_keyname, anno_keyname):
|
||
|
print('Split'.center(100,'-'))
|
||
|
print()
|
||
|
|
||
|
print('json read...\n')
|
||
|
|
||
|
with open(js_all_path, 'r') as load_f:
|
||
|
data = json.load(load_f)
|
||
|
df_anno = pd.DataFrame(data[anno_keyname])
|
||
|
df_img = pd.DataFrame(data[image_keyname])
|
||
|
df_img = df_img.rename(columns={"id": "image_id"})
|
||
|
df_img = df_img.sample(frac=1, random_state=0)
|
||
|
|
||
|
if val_split_num is None:
|
||
|
val_split_num = int(val_split_rate*len(df_img))
|
||
|
|
||
|
if keep_val_inTrain:
|
||
|
df_img_train = df_img
|
||
|
df_img_val = df_img[: val_split_num]
|
||
|
df_anno_train = df_anno
|
||
|
df_anno_val = get_annno(df_img_val, df_anno)
|
||
|
else:
|
||
|
df_img_train = df_img[val_split_num:]
|
||
|
df_img_val = df_img[: val_split_num]
|
||
|
df_anno_train = get_annno(df_img_train, df_anno)
|
||
|
df_anno_val = get_annno(df_img_val, df_anno)
|
||
|
df_img_train = df_img_train.rename(columns={"image_id": "id"}).sort_values(by='id')
|
||
|
df_img_val =df_img_val.rename(columns={"image_id": "id"}).sort_values(by='id')
|
||
|
|
||
|
data[image_keyname] = json.loads(df_img_train.to_json(orient='records'))
|
||
|
data[anno_keyname] = json.loads(df_anno_train.to_json(orient='records'))
|
||
|
str_json = json.dumps(data, ensure_ascii=False)
|
||
|
with open(js_train_path, 'w', encoding='utf-8') as file_obj:
|
||
|
file_obj.write(str_json)
|
||
|
|
||
|
data[image_keyname] = json.loads(df_img_val.to_json(orient='records'))
|
||
|
data[anno_keyname] = json.loads(df_anno_val.to_json(orient='records'))
|
||
|
str_json = json.dumps(data, ensure_ascii=False)
|
||
|
with open(js_val_path, 'w', encoding='utf-8') as file_obj:
|
||
|
file_obj.write(str_json)
|
||
|
|
||
|
print('image total %d, train %d, val %d'%(len(df_img), len(df_img_train), len(df_img_val)))
|
||
|
print('anno total %d, train %d, val %d'%(len(df_anno), len(df_anno_train), len(df_anno_val)))
|
||
|
return df_img
|
||
|
|
||
|
def get_args():
|
||
|
parser = argparse.ArgumentParser(description='Json Merge')
|
||
|
|
||
|
# parameters
|
||
|
parser.add_argument('--json_all_path', type=str,
|
||
|
help='json path to split')
|
||
|
parser.add_argument('--json_train_path', type=str,
|
||
|
help='json path to save the split result -- train part')
|
||
|
parser.add_argument('--json_val_path', type=str,
|
||
|
help='json path to save the split result -- val part')
|
||
|
parser.add_argument('--val_split_rate', type=float, default=0.1,
|
||
|
help='val image number rate in total image, default is 0.1; if val_split_num is set, val_split_rate will not work')
|
||
|
parser.add_argument('--val_split_num', type=int, default=None,
|
||
|
help='val image number in total image, default is None; if val_split_num is set, val_split_rate will not work')
|
||
|
parser.add_argument('--keep_val_inTrain', type=bool, default=False,
|
||
|
help='if true, val part will be in train as well; which means that the content of json_train_path is the same as the content of json_all_path')
|
||
|
parser.add_argument('--image_keyname', type=str, default='images',
|
||
|
help='image key name in json, default images')
|
||
|
parser.add_argument('--anno_keyname', type=str, default='annotations',
|
||
|
help='annotation key name in json, default annotations')
|
||
|
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
|
||
|
help='Args_show(default: True), if True, show args info')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
if args.Args_show:
|
||
|
print('Args'.center(100,'-'))
|
||
|
for k, v in vars(args).items():
|
||
|
print('%s = %s' % (k, v))
|
||
|
print()
|
||
|
return args
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = get_args()
|
||
|
js_split(args.json_all_path,args.json_train_path,args.json_val_path, args.val_split_rate, args.val_split_num,
|
||
|
args.keep_val_inTrain, args.image_keyname, args.anno_keyname)
|
||
|
|
||
|
|