You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.0 KiB
149 lines
5.0 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
|
||
|
|
||
|
class ConvBNReLU(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
padding='same',
|
||
|
**kwargs):
|
||
|
super().__init__()
|
||
|
self._conv = nn.Conv2D(
|
||
|
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
|
||
|
if 'data_format' in kwargs:
|
||
|
data_format = kwargs['data_format']
|
||
|
else:
|
||
|
data_format = 'NCHW'
|
||
|
self._batch_norm = nn.BatchNorm2D(out_channels, data_format=data_format)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self._conv(x)
|
||
|
x = self._batch_norm(x)
|
||
|
x = F.relu(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ConvBN(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
padding='same',
|
||
|
**kwargs):
|
||
|
super().__init__()
|
||
|
self._conv = nn.Conv2D(
|
||
|
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
|
||
|
if 'data_format' in kwargs:
|
||
|
data_format = kwargs['data_format']
|
||
|
else:
|
||
|
data_format = 'NCHW'
|
||
|
self._batch_norm = nn.BatchNorm2D(out_channels, data_format=data_format)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self._conv(x)
|
||
|
x = self._batch_norm(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ConvReLU(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
padding='same',
|
||
|
**kwargs):
|
||
|
super().__init__()
|
||
|
self._conv = nn.Conv2D(
|
||
|
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
|
||
|
if 'data_format' in kwargs:
|
||
|
data_format = kwargs['data_format']
|
||
|
else:
|
||
|
data_format = 'NCHW'
|
||
|
self._relu = nn.ReLU()
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self._conv(x)
|
||
|
x = self._relu(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class Add(nn.Layer):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, x, y, name=None):
|
||
|
return paddle.add(x, y, name)
|
||
|
|
||
|
|
||
|
class Activation(nn.Layer):
|
||
|
"""
|
||
|
The wrapper of activations.
|
||
|
Args:
|
||
|
act (str, optional): The activation name in lowercase. It must be one of ['elu', 'gelu',
|
||
|
'hardshrink', 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid',
|
||
|
'softmax', 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax',
|
||
|
'hsigmoid']. Default: None, means identical transformation.
|
||
|
Returns:
|
||
|
A callable object of Activation.
|
||
|
Raises:
|
||
|
KeyError: When parameter `act` is not in the optional range.
|
||
|
Examples:
|
||
|
from paddleseg.models.common.activation import Activation
|
||
|
relu = Activation("relu")
|
||
|
print(relu)
|
||
|
# <class 'paddle.nn.layer.activation.ReLU'>
|
||
|
sigmoid = Activation("sigmoid")
|
||
|
print(sigmoid)
|
||
|
# <class 'paddle.nn.layer.activation.Sigmoid'>
|
||
|
not_exit_one = Activation("not_exit_one")
|
||
|
# KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink',
|
||
|
# 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax',
|
||
|
# 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])"
|
||
|
"""
|
||
3 years ago
|
|
||
3 years ago
|
def __init__(self, act=None):
|
||
|
super(Activation, self).__init__()
|
||
|
self._act = act
|
||
|
upper_act_names = nn.layer.activation.__dict__.keys()
|
||
|
lower_act_names = [act.lower() for act in upper_act_names]
|
||
|
act_dict = dict(zip(lower_act_names, upper_act_names))
|
||
|
if act is not None:
|
||
|
if act in act_dict.keys():
|
||
|
act_name = act_dict[act]
|
||
3 years ago
|
self.act_func = eval("nn.layer.activation.{}()".format(
|
||
|
act_name))
|
||
3 years ago
|
else:
|
||
|
raise KeyError("{} does not exist in the current {}".format(
|
||
|
act, act_dict.keys()))
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self._act is not None:
|
||
|
return self.act_func(x)
|
||
|
else:
|
||
3 years ago
|
return x
|
||
3 years ago
|
|
||
|
|
||
|
class Identity(nn.Layer):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super(Identity, self).__init__()
|
||
|
|
||
|
def forward(self, input):
|
||
|
return input
|